EIP开放接口使用MD5验签发起请求(v5.x)

验签工具类

PS:该验签方法仅在pamirs-core的5.0.16版本以上可正常使用

public class EipSignUtils {

    public static final String SIGN_METHOD_MD5 = "md5";

    private static final String SIGN_METHOD_HMAC = "hmac";

    private static final String SECRET_KEY_ALGORITHM = "HmacMD5";

    private static final String MESSAGE_DIGEST_MD5 = "MD5";

    public static String signTopRequest(Map<String, String> params, String secret, String signMethod) throws IOException {
        // 第一步:检查参数是否已经排序
        String[] keys = params.keySet().toArray(new String[0]);
        Arrays.sort(keys);

        // 第二步:把所有参数名和参数值串在一起
        StringBuilder query = new StringBuilder();
        if (SIGN_METHOD_MD5.equals(signMethod)) {
            query.append(secret);
        }
        for (String key : keys) {
            String value = params.get(key);
            if (StringUtils.isNoneBlank(key, value)) {
                query.append(key).append(value);
            }
        }

        // 第三步:使用MD5/HMAC加密
        byte[] bytes;
        if (SIGN_METHOD_HMAC.equals(signMethod)) {
            bytes = encryptHMAC(query.toString(), secret);
        } else {
            query.append(secret);
            bytes = encryptMD5(query.toString());
        }

        // 第四步:把二进制转化为大写的十六进制(正确签名应该为32大写字符串,此方法需要时使用)
        return byte2hex(bytes);
    }

    private static byte[] encryptHMAC(String data, String secret) throws IOException {
        byte[] bytes;
        try {
            SecretKey secretKey = new SecretKeySpec(secret.getBytes(StandardCharsets.UTF_8), SECRET_KEY_ALGORITHM);
            Mac mac = Mac.getInstance(secretKey.getAlgorithm());
            mac.init(secretKey);
            bytes = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));
        } catch (GeneralSecurityException e) {
            throw new IOException(e.toString(), e);
        }
        return bytes;
    }

    private static byte[] encryptMD5(String data) throws IOException {
        return encryptMD5(data.getBytes(StandardCharsets.UTF_8));
    }

    private static byte[] encryptMD5(byte[] data) throws IOException {
        try {
            MessageDigest md = MessageDigest.getInstance(MESSAGE_DIGEST_MD5);
            return md.digest(data);
        } catch (NoSuchAlgorithmException e) {
            throw new IOException(e.toString(), e);
        }
    }

    private static String byte2hex(byte[] bytes) {
        StringBuilder sign = new StringBuilder();
        for (byte aByte : bytes) {
            String hex = Integer.toHexString(aByte & 0xFF);
            if (hex.length() == 1) {
                sign.append("0");
            }
            sign.append(hex.toUpperCase());
        }
        return sign.toString();
    }
}

Oinone社区 作者:张博昊原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/14224.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
张博昊的头像张博昊数式管理员
上一篇 2024年6月28日 am10:41
下一篇 2024年7月1日 pm1:58

相关推荐

  • 函数之异步执行

    总体介绍 异步任务是非常常见的一种开发模式,它在分布式的开发模式中有很多应用场景如: 高并发场景中,我们一般采用把长流程切短,用异步方式去掉可以异步的非关键功能,缩小主流程响应时间,提升用户体验 异构系统的集成调用,通过异步任务完成解耦与自动重试 分布式系统最终一致性的可选方案 本文将介绍oinone是如何结合Spring+TbSchedule来完成异步任务 构建第一个异步任务 新建PetShopService和PetShopServiceImpl 1、 新建PetShopService定义updatePetShops方法 package pro.shushi.pamirs.demo.api.service; import pro.shushi.pamirs.demo.api.model.PetShop; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import java.util.List; @Fun(PetShopService.FUN_NAMESPACE) public interface PetShopService { String FUN_NAMESPACE = "demo.PetShop.PetShopService"; @Function void updatePetShops(List<PetShop> petShops); } 2、PetShopServiceImpl实现PetShopService接口并在updatePetShops增加@XAsync注解 package pro.shushi.pamirs.demo.core.service; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.PetShop; import pro.shushi.pamirs.demo.api.service.PetShopService; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.trigger.annotation.XAsync; import java.util.List; @Fun(PetShopService.FUN_NAMESPACE) @Component public class PetShopServiceImpl implements PetShopService { @Override @Function @XAsync(displayName = "异步批量更新宠物商店",limitRetryNumber = 3,nextRetryTimeValue = 60) public void updatePetShops(List<PetShop> petShops) { new PetShop().updateBatch(petShops); } } a. displayName = "异步批量更新宠物商店",定义异步任务展示名称b. limitRetryNumber = 3,定义任务失败重试次数,,默认:-1不断重试c. nextRetryTimeValue = 60,定义任务失败重试的时间数,默认:3d. nextRetryTimeUnit,定义任务失败重试的时间单位,默认:TimeUnitEnum.SECONDe. delayTime,定义任务延迟执行的时间数,默认:0f. delayTimeUnit,定义任务延迟执行的时间单位,默认:TimeUnitEnum.SECOND 修改PetShopBatchUpdateAction调用异步任务 引入PetShopService 修改conform方法,调用petShopService.updatePetShops方法 package pro.shushi.pamirs.demo.core.action; @Model.model(PetShopBatchUpdate.MODEL_MODEL) @Component public class PetShopBatchUpdateAction { @Autowired private PetShopService petShopService; @Action(displayName = "确定",bindingType = ViewTypeEnum.FORM,contextType = ActionContextTypeEnum.SINGLE) public PetShopBatchUpdate conform(PetShopBatchUpdate data){ List<PetShop> shops = ArgUtils.convert(PetShopProxy.MODEL_MODEL, PetShop.MODEL_MODEL,proxyList); // 调用异步任务 petShopService.updatePetShops(shops); }); return data; } } 不同应用如何隔离执行单元 在schedule跟模块部署一起的时候,多模块独立boot的情况下,需要做必要的配置。如果schedule独立部署则没有必要,因为全部走远程,不存在类找不到的问题 通过配置pamirs.zookeeper.rootPath,确保两组机器都能覆盖所有任务分片,这样不会漏数据 通过pamirs.event.schedule.ownSign来隔离。确保两组机器只取各自产生的数据,这样不会重复执行数据 pamirs: zookeeper: zkConnectString: 127.0.0.1:2181 zkSessionTimeout: 60000 rootPath: /demo event: enabled: true schedule: enabled: true ownSign: demo rocket-mq: namesrv-addr: 127.0.0.1:9876

    2024年5月25日
    1.3K00
  • 【DM】后端部署使用Dameng数据库(达梦)

    达梦数据库配置 驱动配置 达梦数据库的服务端版本和驱动版本需要匹配,建议使用服务端安装时提供的jdbc驱动,不要使用官方maven仓库中的驱动。 报错 表 xx 中不能同时包含聚集 KEY 和大字段,建表的时候就指定非聚集主键。SELECT * FROM V$DM_INI WHERE PARA_NAME = ‘PK_WITH_CLUSTER’;SP_SET_PARA_VALUE(1,’PK_WITH_CLUSTER’,0) Maven配置 DM8(目前maven仓库最新版本) <dm.version>8.1.2.192</dm.version> <dependency> <groupId>com.dameng</groupId> <artifactId>DmJdbcDriver18</artifactId> <version>${dm.version}</version> </dependency> PS: 8.1.3.12版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 Maven配置 DM7 <dm7.version>7.6.1.120</dm7.version> <dependency> <groupId>com.dameng</groupId> <artifactId>Dm7JdbcDriver18</artifactId> <version>${dm7.version}</version> </dependency> PS: 7.6.1.120版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 离线驱动下载 Dm7JdbcDriver18-7.6.1.120.jarDmJdbcDriver18-8.1.3.12.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: dm.jdbc.driver.DmDriver # url: jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql url: jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.OracleValidConnectionChecker validationQuery: SELECT 1 FROM DUAL 连接url配置 点击查看官方文档:DM JDBC 编程指南 连接串1 jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:schema参数在低版本驱动区分大小写,高版本驱动不再区分大小写,为了避免错误,统一使用全大写。columnNameUpperCase参数与官方介绍不一致,为了避免错误,需要显式指定。 连接串2 jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:可能是未来更高版本中使用的连接串形式。 达梦数据库在不同驱动版本下需要使用不同的连接串进行处理,具体可参考下表:(使用错误的连接串将无法正常启动) Dm7JdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 7.6.0.165 2019.06.04 1 否 是 否 不支持LocalDateTime类型 7.6.1.120(建议) 2022.09.14 1 是 是 是 – DmJdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 8.1.2.192 2023.01.12 1 是 否 是 – 8.1.3.12(建议) 2023.04.17 2 是 否 是 – 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: DM version: 8 majorVersion: 8 pamirs: type: DM version: 8 majorVersion: 8 数据库版本 type version majorVersion 7-20220916 DM 7 20220916 8-20230418 DM 8 8 schedule方言配置 pamirs: event: schedule: dialect: type: DM version: 8 majorVersion: 8 type version majorVersion…

    2023年11月1日
    13.4K00
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.5K00
  • 工作流引入流程概览与流程监控

    流程概览依赖说明 使用 流程概览 功能前,需要在项目中引入 pamirs-workflow-datavi-core、 pamirs-data-visualization-core依赖,并启动datavi模块: <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-datavi-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.data.visualization</groupId> <artifactId>pamirs-data-visualization-core</artifactId> </dependency> 警告: 在 oinone 平台启用「流程概览」能力时,应用启动模块一旦引入 pamirs-workflow-api/core,必须同时引入 pamirs-workflow-datavi-api/core。在多启动模块架构下,严禁出现仅部分启动模块引入 pamirs-workflow-core 而未引入 pamirs-workflow-datavi-core 的情况,否则将导致流程概览相关元数据计算异常,出现删表等情况。 流程概览配置项 流程概览页面内置缓存机制,可通过配置项调整缓存刷新周期及图表展示的数据条数: pamirs: workflow: dashboard: cache-time: 10 # 流程概览缓存刷新时间(单位:分钟),默认 10 分钟 page-size: 10 # 流程运行分析中 4 个图表的展示数量,默认查询前 10 条数据 统计指标说明 引入 pamirs-workflow-datavi-core 依赖后,系统会按照以下规则进行数据同步: 当日数据同步:每小时同步一次当日数据; 昨日数据同步:次日凌晨同步前一日数据。 由于在引入依赖后才会开始执行数据同步,统计指标页提供了「同步」按钮,可用于对历史数据进行补采。即使不执行历史同步,也不会影响核心业务流程,仅会影响统计数据和图表的展示效果。 统计指标数据主要用于 支撑 流程概览 和 流程监控 中的统计图表展示; 为数据分析与可视化提供基础数据。 上述统计数据对工作流的审批、流转等核心业务无任何影响。如有需要,也可以基于流程监控的数据,配合数据可视化设计器,自定义构建符合业务需求的展示页面。

    2025年11月17日
    21300
  • DsHint(指定数据源)和BatchSizeHint(指定批次数量)

    概述和使用场景 DsHintApi ,强制指定数据源, BatchSizeHintApi ,强制指定查询批量数量 API定义 DsHintApi public static DsHintApi model(String model/**模型编码*/) { // 具体实现 } public DsHintApi(Object dsKey/***数据源名称*/) { // 具体实现 } BatchSizeHintApi public static BatchSizeHintApi use(Integer batchSize) { // 具体实现 } 使用示例 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱 2、DsHintApi使用示例包裹在try里面的所有查询都会强制使用指定的数据源 // 使用方式1: try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 使用方式2: try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } 3、BatchSizeHintApi使用示例包裹在try里面的所有查询都会按照指定的batchSize进行查询 // 查询指定每次查询500跳 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); }

    2024年5月18日
    1.4K00

Leave a Reply

登录后才能评论