EIP开放接口使用MD5验签发起请求(v5.x)

验签工具类

PS:该验签方法仅在pamirs-core的5.0.16版本以上可正常使用

public class EipSignUtils {

    public static final String SIGN_METHOD_MD5 = "md5";

    private static final String SIGN_METHOD_HMAC = "hmac";

    private static final String SECRET_KEY_ALGORITHM = "HmacMD5";

    private static final String MESSAGE_DIGEST_MD5 = "MD5";

    public static String signTopRequest(Map<String, String> params, String secret, String signMethod) throws IOException {
        // 第一步:检查参数是否已经排序
        String[] keys = params.keySet().toArray(new String[0]);
        Arrays.sort(keys);

        // 第二步:把所有参数名和参数值串在一起
        StringBuilder query = new StringBuilder();
        if (SIGN_METHOD_MD5.equals(signMethod)) {
            query.append(secret);
        }
        for (String key : keys) {
            String value = params.get(key);
            if (StringUtils.isNoneBlank(key, value)) {
                query.append(key).append(value);
            }
        }

        // 第三步:使用MD5/HMAC加密
        byte[] bytes;
        if (SIGN_METHOD_HMAC.equals(signMethod)) {
            bytes = encryptHMAC(query.toString(), secret);
        } else {
            query.append(secret);
            bytes = encryptMD5(query.toString());
        }

        // 第四步:把二进制转化为大写的十六进制(正确签名应该为32大写字符串,此方法需要时使用)
        return byte2hex(bytes);
    }

    private static byte[] encryptHMAC(String data, String secret) throws IOException {
        byte[] bytes;
        try {
            SecretKey secretKey = new SecretKeySpec(secret.getBytes(StandardCharsets.UTF_8), SECRET_KEY_ALGORITHM);
            Mac mac = Mac.getInstance(secretKey.getAlgorithm());
            mac.init(secretKey);
            bytes = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));
        } catch (GeneralSecurityException e) {
            throw new IOException(e.toString(), e);
        }
        return bytes;
    }

    private static byte[] encryptMD5(String data) throws IOException {
        return encryptMD5(data.getBytes(StandardCharsets.UTF_8));
    }

    private static byte[] encryptMD5(byte[] data) throws IOException {
        try {
            MessageDigest md = MessageDigest.getInstance(MESSAGE_DIGEST_MD5);
            return md.digest(data);
        } catch (NoSuchAlgorithmException e) {
            throw new IOException(e.toString(), e);
        }
    }

    private static String byte2hex(byte[] bytes) {
        StringBuilder sign = new StringBuilder();
        for (byte aByte : bytes) {
            String hex = Integer.toHexString(aByte & 0xFF);
            if (hex.length() == 1) {
                sign.append("0");
            }
            sign.append(hex.toUpperCase());
        }
        return sign.toString();
    }
}

Oinone社区 作者:张博昊原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/14224.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
张博昊的头像张博昊数式管理员
上一篇 2024年6月28日 am10:41
下一篇 2024年7月1日 pm1:58

相关推荐

  • 元数据表介绍

    模型 模型元数据的讲解 https://doc.oinone.top/oio4/9281.html base_model 模型表 字段名 备注 示例 system_source BASE是系统创建, MANUAL是人工创建 MANUAL pk 主键 id module 模块编码 demo_core model 模型编码 demo.PetType name api名称 petType lname 模型代码名称 pro.shushi.pamirs.demo.api.model.PetType table 逻辑数据表名称 demo_core_pet_type ds_key 逻辑数据源名 pamirs type 模型类型 store display_name 显示名称 品种 data_manager 是否允许系统根据模型变化自动创建表和更新表 1 ordering 排序 createDate DESC, id DESC super_models 父模型 demo.AbstractDemoIdModel uniques 唯一索引 indexes 索引 name,createDate 模块 模块元数据的讲解 https://doc.oinone.top/oio4/9279.html base_module 模块表 字段名 备注 示例 display_name 显示名称 OinoneDemo name api名称 DemoCore module 模块编码 demo_core module_dependencies 依赖模块编码列表 base,common,file,trigger module_exclusions 互斥模块编码列表 module_upstreams 上游模块编码列表 system_source BASE是系统创建, MANUAL是人工创建 MANUAL web web应用 1 default_home_page_model 默认主页模型编码 函数 函数元数据的讲解 https://doc.oinone.top/oio4/9282.html base_function 函数表 字段名 备注 示例 display_name 显示名称 根据条件分页查询记录列表和总数 clazz 函数位置 pro.shushi.pamirs.framework.orm.DefaultReadApi module 模块 demo_core method 函数方法 queryPage namespace 函数命名空间 demo.PetType argument_list 函数参数 [{"ltype":"pro.shushi.pamirs.meta.api.dto.condition.Pagination","model":"base.Pagination","modelGeneric":false,"multi":false,"name":"page","ttype":"m2o"},{"ltype":"pro.shushi.pamirs.meta.api.dto.wrapper.IWrapper","ltypeT":"java.lang.Object","model":"base.Condition","modelGeneric":true,"multi":false,"name":"queryWrapper","ttype":"m2o"}] fun 函数编码 queryPage return_type 返回值类型 {"ltype":"pro.shushi.pamirs.meta.api.dto.condition.Pagination","model":"base.Pagination","modelGeneric":false,"multi":false,"ttype":"m2o"} sys 由系统产生的元数据 1 type 函数类型 1: CREATE, 2: DELETE, 4: UPDATE, 8: QUERY 8 data_manager 数据管理器函数 1 codes 代码内容 open_level 开放级别 2: LOCAL, 4: REMOTE, 8: API, 6: LOCAL+REMOTE, 10: LOCAL+API, 12: REMOTE+API, 14:LOCAL+REMOTE+API 14 模型字段 字段讲解 https://doc.oinone.top/oio4/9239.html base_field 字段表 字段名 备注 示例 system_source BASE是系统创建, MANUAL是人工创建 MANUAL name api名称 name field 字段编码 name ttype 关系类型, 类型:m2o/o2m/m2m/enum/string/integer/map/datetime/related/money/html string model 模型编码…

    2024年8月23日
    1.1K00
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.6K00
  • 【HighGo】后端部署使用HighGo数据库

    HighGo数据库配置 驱动配置 jdbc仓库 https://mvnrepository.com/artifact/com.highgo/HgdbJdbc Maven配置(6.0.1版本可用) <highgo.version>6.0.1.jre8</highgo.version> <dependency> <groupId>com.highgo</groupId> <artifactId>HgdbJdbc</artifactId> <version>${highgo.version}</version> </dependency> JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.highgo.jdbc.Driver url: jdbc:highgo://127.0.0.1:5866/oio_base?currentSchema=base,utl_file username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 官方文档 https://www.highgo.com/document/zh-cn/application/jdbc.html url格式 jdbc:highgo://ip:端口号/数据库名?currentSchema=schema1,schema2 在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。 jdbc指定schema时可以在currentSchema后指定多个schema,中间用,分隔,第一个schema为业务库表存放的主schema。 highgo数据库6.0版本里每个数据库默认会带一个utl_file的schema,该模式与文件访问功能有关,需要带在jdbc的schema中,但不能放在第一个。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: HighGoDB version: 6 major-version: 6.0.1 biz_data: type: HighGoDB version: 6 major-version: 6.0.1 数据库版本 type version majorVersion 6.0.x HighGo 6 6.0.1 PS:由于方言开发环境为6.0.1版本,其他类似版本(6.0.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: HighGoDB version: 6 major-version: 6.0.1 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Highgo数据库用户初始化及授权 — init oio_base user (user name can be modified by oneself) CREATE USER oio_base WITH PASSWORD 'Test@12345678'; — if using automatic database and schema creation, this is very important. ALTER USER oio_base CREATEDB; SELECT * FROM pg_roles; — if using highgo database, this authorization is required. GRANT CREATE ON DATABASE highgo TO oio_base;

    2025年7月10日
    32800
  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.6K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00

Leave a Reply

登录后才能评论