对字段进行加密存储

需求:

模型字段上使用 pro.shushi.pamirs.user.api.crypto.annotation.EncryptField 注解
模型动作上使用 pro.shushi.pamirs.user.api.crypto.annotation.NeedDecrypt 注解

示例:

对需要加密的字段添加@EncryptField注解

@Model.model(Student.MODEL_MODEL)
@Model(displayName = "学生", summary = "学生")
public class Student extends IdModel {

    public static final String MODEL_MODEL = "top.Student";

    @Field(displayName = "学生名字")
    @Field.String
    private String studentName;

    @Field(displayName = "学生ID")
    @Field.Integer
    private Long studentId;

    @Field(displayName = "学生卡号")
    @Field.String
    @EncryptField
    private String studentCard;
}

对函数添加@NeedDecrypt注解

   @Action.Advanced(name = FunctionConstants.create, managed = true)//默认取的是方法名
    @Action(displayName = "确定", summary = "添加", bindingType = ViewTypeEnum.FORM)
    @Function(name = FunctionConstants.create)//默认取的是方法名
    @Function.fun(FunctionConstants.create)//默认取的是方法名
    @NeedDecrypt
    public Student create(Student data) {
        String studentCard = data.getStudentCard();
        if (studentCard != null) {
        //自定义加密方法
            data.setStudentCard(StudentEncoder.encode(studentCard));
        }
        return data.create();
    }

Oinone社区 作者:yexiu原创文章,如若转载,请注明出处:https://doc.oinone.top/dai-ma-shi-jian/18227.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
yexiu的头像yexiu数式员工
上一篇 2024年10月9日 pm5:26
下一篇 2024年10月10日 pm9:55

相关推荐

  • 后端:如何自定义表达式实现特殊需求?扩展内置函数表达式

    平台提供了很多的表达式,如果这些表达式不满足场景?那我们应该如何新增表达式去满足项目的需求?目前平台支持的表达式内置函数,参考 1. 扩展表达式的场景 注解@Validation的rule字段支持配置表达式校验如果需要判断入参List类型字段中的某一个参数进行NULL校验,发现平台的内置函数不支持该场景的配置,这里就可以通过平台的机制,对内置函数进行扩展。 常见的一些代码场景,如下: package pro.shushi.pamirs.demo.core.action; ……引用类 @Model.model(PetShopProxy.MODEL_MODEL) @Component public class PetShopProxyAction extends DataStatusBehavior<PetShopProxy> { @Override protected PetShopProxy fetchData(PetShopProxy data) { return data.queryById(); } @Validation(ruleWithTips = { @Validation.Rule(value = "!IS_BLANK(data.code)", error = "编码为必填项"), @Validation.Rule(value = "LEN(data.name) < 128", error = "名称过长,不能超过128位"), }) @Action(displayName = "启用") @Action.Advanced(invisible="!(activeRecord.code !== undefined && !IS_BLANK(activeRecord.code))") public PetShopProxy dataStatusEnable(PetShopProxy data){ data = super.dataStatusEnable(data); data.updateById(); return data; } ……其他代码 } 2. 新建一个自定义表达式的函数 校验入参如果是个集合对象的情况下,单个对象的某个字段如果为空,返回false的函数。 例子:新建一个CustomCollectionFunctions类 package xxx.xxx.xxx; import org.apache.commons.collections4.CollectionUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.common.constants.NamespaceConstants; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.List; import static pro.shushi.pamirs.meta.enmu.FunctionCategoryEnum.COLLECTION; import static pro.shushi.pamirs.meta.enmu.FunctionLanguageEnum.JAVA; import static pro.shushi.pamirs.meta.enmu.FunctionOpenEnum.LOCAL; import static pro.shushi.pamirs.meta.enmu.FunctionSceneEnum.EXPRESSION; /** * 自定义内置函数 */ @Fun(NamespaceConstants.expression) @Component public class CustomCollectionFunctions { /** * LIST_FIELD_NULL 就是我们自定义的表达式,不能与已经存在的表达式重复!!! * * @param list * @param field * @return */ @Function.Advanced( displayName = "校验集成的参数是否为null", language = JAVA, builtin = true, category = COLLECTION ) @Function.fun("LIST_FIELD_NULL") @Function(name = "LIST_FIELD_NULL", scene = {EXPRESSION}, openLevel = LOCAL, summary = "函数示例: LIST_FIELD_NULL(list,field),函数说明: 传入一个对象集合,校验集合的字段是否为空" ) public Boolean listFieldNull(List list, String field) { if (null == list) { return false; } if (CollectionUtils.isEmpty(list)) { return false; } for (Object data : list) { Object value =…

    2024年5月30日
    1.9K00
  • 非存储字段搜索,适应灵活的搜索场景

    1、非存储字段搜索 1.1 描述 通常根据本模型之外的信息作为搜索条件时,通常会把 这些字段放在代理模型上。这类场景我们称之为 非存储字段搜索 1.2 场景一 非存储字段为基本的String。1.代码定义:非存储字段为基本的包装数据类型 @Field(displayName = "确认密码", store = NullableBoolEnum.FALSE) private String confirmPassword; 2.设计器拖拽:列表中需要有退拽这个字段,字段是否隐藏的逻辑自身业务是否需要决定。3.页面通过非存储字段为基本的包装数据类型进行搜索时。会拼在 queryWrapper 的属性queryData中,queryData为Map,key为字段名,value为搜索值。4.后台逻辑处理代码示例: Map<String, Object> queryData = queryWrapper.getQueryData(); if (null != queryData) { Object productIdObj = queryData.get(PRODUCT_ID); if (Objects.nonNull(productIdObj)) { String productId = productIdObj.toString(); queryWrapper.lambda().eq(MesProduceOrderProxy::getProductId, productId); } } 1.3 场景二 非存储字段为非存储对象。 定义 为非存储的 @Field(displayName = "款", store = NullableBoolEnum.FALSE) @Field.many2one @Field.Relation(store = false) private MesProduct product; 2.页面在搜索栏拖拽非存储字段作为搜索条件 3.后台逻辑处理代码示例: try { if (null != queryData && !queryData.isEmpty()) { List<Long> detailId = null; BasicSupplier supplier = JsonUtils.parseMap2Object((Map<String, Object>) queryData.get(supplierField), BasicSupplier.class); MesProduct product = JsonUtils.parseMap2Object((Map<String, Object>) queryData.get(productField), MesProduct.class); MesMaterial material = JsonUtils.parseMap2Object((Map<String, Object>) queryData.get(materialField), MesMaterial.class); if (supplier != null) { detailId = bomService.queryBomDetailIdBySupplierId(supplier.getId()); if (CollectionUtils.isEmpty(detailId)) { detailId.add(-1L); } } if (product != null) { List<Long> produceOrderId = produceOrderService.queryProductOrderIdByProductIds(product.getId()); if (CollectionUtils.isNotEmpty(produceOrderId)) { queryWrapper.lambda().in(MesProduceBomSizes::getProduceOrderId, produceOrderId); } } if (material != null) { //找出两个bom列表的并集 List<Long> materBomDetailId = bomService.queryBomDetailIdByMaterialId(material.getId()); if (CollectionUtils.isNotEmpty(detailId)) { detailId = detailId.stream().filter(materBomDetailId::contains).collect(Collectors.toList()); } else { detailId = new ArrayList<>(); if (CollectionUtils.isEmpty(materBomDetailId)) { detailId.add(-1L); } else { detailId.addAll(materBomDetailId); } } } if (CollectionUtils.isNotEmpty(detailId)) { queryWrapper.lambda().in(MesProduceBomSizes::getProductBomId, detailId); } } } catch (Exception e) { log.error("queryData处理异常", e); } 注意:…

    2024年2月20日
    1.1K00
  • 查询时自定义排序字段和排序规则

    指定字段排序 平台默认排序字段,参考IdModel,按创建时间和ID倒序(ordering = "createDate DESC, id DESC") 方法1:模型指定排序 模型定义增加排序字段。@Model.Advanced(ordering = "xxxxx DESC, yyyy DESC") @Model.model(PetShop.MODEL_MODEL) @Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"}) @Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd") @Model.Advanced(ordering = "createDate DESC") public class PetShop extends AbstractDemoIdModel { public static final String MODEL_MODEL="demo.PetShop"; // ………… } 方法2:Page查询中可以自定排序规则 API参考 pro.shushi.pamirs.meta.api.dto.condition.Pagination#orderBy public <G, R> Pagination<T> orderBy(SortDirectionEnum direction, Getter<G, R> getter) { if (null == getSort()) { setSort(new Sort()); } getSort().addOrder(direction, getter); return this; } 具体示例 @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShop> queryPage(Pagination<PetShop> page, IWrapper<PetShop> queryWrapper){ page.orderBy(SortDirectionEnum.DESC, PetShop::getCreateDate); page = new PetShop().queryPage(page, queryWrapper); return page; } 方法3:查询的wapper中指定 API参考:pro.shushi.pamirs.framework.connectors.data.sql.AbstractWrapper#orderBy @Override public Children orderBy(boolean condition, boolean isAsc, R… columns) { if (ArrayUtils.isEmpty(columns)) { return typedThis; } SqlKeyword mode = isAsc ? ASC : DESC; for (R column : columns) { doIt(condition, ORDER_BY, columnToString(column), mode); } return typedThis; } 具体示例 public List<PetShop> queryList(String name) { List<PetShop> petShops = Models.origin().queryListByWrapper( Pops.<PetShop>lambdaQuery().from(PetShop.MODEL_MODEL) .orderBy(true, true, PetShop::getCreateDate) .orderBy(true, true, PetShop::getId) .like(PetShop::getShopName, name)); return petShops; } 设置查询不排序 方法1:关闭平台默认排序字段,设置模型的ordering,改成:ordering = "1=1" 模型定义增加排序字段。@Model.Advanced(ordering = "1=1") @Model.model(PetShop.MODEL_MODEL) @Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"}) @Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd") @Model.Advanced(ordering =…

    2024年5月25日
    1.5K00
  • 读写分离

    总体介绍 Oinone的读写分离方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。 [Sharding-JDBC] 读写分离依赖于主从复制来同步数据,从库复制数据后,才能通过读写分离策略将读请求分发到从库,实现读写操作的分流,请根据业务需求自行实现主从配置。 配置读写策略 配置 top_demo 模块走读写分离的逻辑数据源 pamirsSharding。 配置数据源。 为 pamirsSharding 配置数据源以及 sharding 规则。 指定需要被sharding-jdbc接管的模块 指定top_demo模块给 Sharding-JDBC 接管,接管逻辑数据源名为 pamirsSharding pamirs: framework: data: ds-map: base: base top_demo: pamirsSharding 配置数据源 pamirs: datasource: pamirsMaster: driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource url: jdbc:mysql://127.0.0.1:3306/61_pamirs_mydemo_master?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: root password: ma123456 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true pamirsSlaver: # 从库数据源配置 driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource url: jdbc:mysql://127.0.0.1:3306/61_pamirs_mydemo_slaver?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: root password: ma123456 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 配置读写数据源及规则 pamirs: sharding: define: data-sources: pamirsSharding: pamirsMaster # 为逻辑数据源pamirsSharding指向主数据源pamirsMaster。 models: "[trigger.PamirsSchedule]": tables: 0..13 rule: pamirsSharding: actual-ds: # 指定逻辑数据源pamirsSharding代理的数据源为pamirsMaster、pamirsSlaver – pamirsMaster – pamirsSlaver # 以下配置跟sharding-jdbc配置一致 replicaQueryRules: – data-sources: pamirsSharding: primaryDataSourceName: pamirsMaster # 写库数据源 replicaDataSourceNames: – pamirsSlaver # 读库数据源 loadBalancerName: round_robin load-balancers: round_robin: type: ROUND_ROBIN # 读写规则

    2025年5月22日
    37600
  • 如何使用位运算的数据字典

    场景举例 日常有很多项目,数据库中都有表示“多选状态标识”的字段。在这里用我们项目中的一个例子进行说明一下: 示例一: 表示某个商家是否支持多种会员卡打折(如有金卡、银卡、其他卡等),项目中的以往的做法是:在每条商家记录中为每种会员卡建立一个标志位字段。如图: 用多字段来表示“多选标识”存在一定的缺点:首先这种设置方式很明显不符合数据库设计第一范式,增加了数据冗余和存储空间。再者,当业务发生变化时,不利于灵活调整。比如,增加了一种新的会员卡类型时,需要在数据表中增加一个新的字段,以适应需求的变化。  – 改进设计:标签位flag设计二进制的“位”本来就有表示状态的作用。可以用各个位来分别表示不同种类的会员卡打折支持:这样,“MEMBERCARD”字段仍采用整型。当某个商家支持金卡打折时,则保存“1(0001)”,支持银卡时,则保存“2(0010)”,两种都支持,则保存“3(0011)”。其他类似。表结构如图: 我们在编写SQL语句时,只需要通过“位”的与运算,就能简单的查询出想要数据。通过这样的处理方式既节省存储空间,查询时又简单方便。 //查询支持金卡打折的商家信息:   select * from factory where MEMBERCARD & b'0001'; // 或者:   select * from factory where MEMBERCARD & 1;    // 查询支持银卡打折的商家信息:   select * from factory where MEMBERCARD & b'0010'; // 或者:   select * from factory where MEMBERCARD & 2; 二进制( 位运算)枚举 可以通过@Dict注解设置数据字典的bit属性或者实现BitEnum接口来标识该枚举值为2的次幂。二进制枚举最大的区别在于值的序列化和反序列化方式是不一样的。 位运算的枚举定义示例 import pro.shushi.pamirs.meta.annotation.Dict; import pro.shushi.pamirs.meta.common.enmu.BitEnum; @Dict(dictionary = ClientTypeEnum.DICTIONARY, displayName = "客户端类型枚举", summary = "客户端类型枚举") public enum ClientTypeEnum implements BitEnum { PC(1L, "PC端", "PC端"), MOBILE(1L << 1, "移动端", "移动端"), ; public static final String DICTIONARY = "base.ClientTypeEnum"; private final Long value; private final String displayName; private final String help; ClientTypeEnum(Long value, String displayName, String help) { this.value = value; this.displayName = displayName; this.help = help; } @Override public Long value() { return value; } @Override public String displayName() { return displayName; } @Override public String help() { return help; } } 使用方法示例 API: addTo 和 removeFrom List<ClientTypeEnum> clientTypes = module.getClientTypes(); // addTo ClientTypeEnum.PC.addTo(clientTypes); // removeFrom ClientTypeEnum.PC.removeFrom(clientTypes); 在查询条件中的使用 List<Menu> moduleMenus = new Menu().queryListByWrapper(menuPage, LoaderUtils.authQuery(wrapper).eq(Menu::getClientTypes, ClientTypeEnum.PC));

    2023年11月24日
    1.4K00

Leave a Reply

登录后才能评论