Excel导入扩展点-整体导入(批量导入)

1、【导入】在有些场景,需要获取Excel导入的整体数据,进行批量的操作或者校验

可以通过实现导入扩展点的方式实现,入参data是导入Excel的数据列表;业务可以根据实际情况进行数据校验

1)Excel模板定义,需要设置setEachImport(false)

Excel导入扩展点-整体导入(批量导入)

2)导入扩展点API定义

pro.shushi.pamirs.file.api.extpoint.ExcelImportDataExtPoint#importData

3)示例代码参考:

pro.shushi.pamirs.translate.extpoint.ResourceTranslationImportExtPoint#importData

@Slf4j
@Component
@Ext(ExcelImportTask.class)
public class ResourceTranslationImportExtPoint extends AbstractExcelImportDataExtPointImpl<List<ResourceTranslationItem>> {

    @Override
    //TODO 表达式,可以自定义,比如可以支持1个模型的多个【导入名称】的不同模板
    @ExtPoint.Implement(expression = "importContext.definitionContext.model==\"" + ResourceTranslation.MODEL_MODEL + "\"")
    public Boolean importData(ExcelImportContext importContext, List<ResourceTranslationItem> dataList) {
        //TODO dataList就是excel导入那个sheet的所有内容

        return true;
    }

}

2、【导入】逐行导入的时候做事务控制

在模板中定义中增加事务的定义,并设置异常后回滚。参加示例代码:

excel模板定义

@Component
public class DemoItemImportTemplate implements ExcelTemplateInit {

    public static final String TEMPLATE_NAME = "商品导入模板";

    @Override
    public List<ExcelWorkbookDefinition> generator() {
        //定义事务(导入处理中,只操作单个表的不需要事务定义。)
        //是否定义事务根据实际业务逻辑确定。比如:有些场景在导入前需要删除数据后在进行导入就需要定义事务
        InitializationUtil.addTxConfig(DemoItem.MODEL_MODEL, ExcelDefinitionContext.EXCEL_TX_CONFIG_PREFIX + TEMPLATE_NAME);

        return Collections.singletonList(
                ExcelHelper.fixedHeader(DemoItem.MODEL_MODEL, TEMPLATE_NAME)
                        .setType(ExcelTemplateTypeEnum.IMPORT)
                        .createSheet("商品导入-sheet1")
                        .createBlock(DemoItem.MODEL_MODEL)
                        .addUnique(DemoItem.MODEL_MODEL,"name")
                        .addColumn("name","名称")
                        .addColumn("description","描述")
                        .addColumn("itemPrice","单价")
                        .addColumn("inventoryQuantity","库存")
                        .build().setEachImport(true)
                        //TODO 设置异常后回滚的标识,这个地方会回滚事务
                        .setHasErrorRollback(true)
                        .setExcelImportMode(ExcelImportModeEnum.SINGLE_MODEL)
        );

    }
}

导入逻辑处理

@Slf4j
@Component
@Ext(ExcelImportTask.class)
public class DemoItemImportExtPoint extends AbstractExcelImportDataExtPointImpl<DemoItem> implements ExcelImportDataExtPoint<DemoItem> {

    @Autowired
    private DemoItemService demoItemService;

    @Override
    @ExtPoint.Implement(expression = "importContext.definitionContext.model == \"" + DemoItem.MODEL_MODEL + "\"")
    public Boolean importData(ExcelImportContext importContext, DemoItem data) {
        ExcelImportTask importTask = importContext.getImportTask();
        try {
            DemoItemImportTask hrExcelImportTask = new DemoItemImportTask().queryById(importTask.getId());

            String publishUserName = Optional.ofNullable(hrExcelImportTask).map(DemoItemImportTask::getPublishUserName).orElse(null);
            data.setPublishUserName(publishUserName);

            demoItemService.create(data);
        } catch(PamirsException e) {
            log.error("导入异常", e);
        } catch (Exception e) {
            log.error("导入异常", e);
        }
        return Boolean.TRUE;
    }
}

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4856.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2023年12月5日 pm6:17
下一篇 2023年12月18日 am9:59

相关推荐

  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    1.8K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    83200
  • 自定义数据权限拦截处理

    业务场景 公司给员工对哪些模块有访问权限,这个时候就需要在员工访问模块表的时候做数据过滤, 解决方案 我们可以通过平台提供的数据过滤占位符解决这个问题,新建一条数据行权限,过滤语句条件是占位符,再编写占位符的解析逻辑 1.初始化权限基础数据 package pro.shushi.pamirs.demo.core.init; import com.google.common.collect.Lists; import org.springframework.core.annotation.Order; import org.springframework.stereotype.Component; import pro.shushi.pamirs.auth.api.constants.AuthConstants; import pro.shushi.pamirs.auth.api.enmu.AuthGroupTypeEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionDataSourceEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionTypeEnum; import pro.shushi.pamirs.auth.api.model.AuthGroup; import pro.shushi.pamirs.auth.api.model.AuthRole; import pro.shushi.pamirs.auth.api.model.ResourcePermission; import pro.shushi.pamirs.boot.base.model.UeModule; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.api.init.InstallDataInit; import pro.shushi.pamirs.boot.common.api.init.UpgradeDataInit; import pro.shushi.pamirs.demo.api.DemoModule; import pro.shushi.pamirs.demo.core.placeholder.EmployeeModulePlaceholder; import pro.shushi.pamirs.framework.common.utils.ObjectUtils; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import java.util.Collections; import java.util.List; @Slf4j @Component @Order(0) public class DemoModuleBizInit implements InstallDataInit, UpgradeDataInit { @Override public List<String> modules() { return Collections.singletonList(DemoModule.MODULE_MODULE); } @Override public int priority() { return 0; } @Override public boolean init(AppLifecycleCommand command, String version) { this.initAuth(); return true; } @Override public boolean upgrade(AppLifecycleCommand command, String version, String existVersion) { this.initAuth(); return true; } private void initAuth() { AuthGroup authGroup = new AuthGroup(); authGroup.setName("测试权限组") .setDisplayName("测试权限组") .setType(AuthGroupTypeEnum.RUNTIME) .setActive(true); authGroup.createOrUpdate(); AuthRole authRole = new AuthRole(); authRole.setCode("TEST_ROLE_1") .setName("测试角色") .setRoleTypeCode(AuthConstants.ROLE_SYSTEM_TYPE_CODE) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setActive(true); authRole.createOrUpdate(); authRole.setGroups(Lists.newArrayList(authGroup)); authRole.fieldSave(AuthRole::getGroups); ResourcePermission authPermission = new ResourcePermission(); authPermission.setName("测试模块权限过滤") .setDomainExp(EmployeeModulePlaceholder.PLACEHOLDER) .setModel(ModuleDefinition.MODEL_MODEL) .setPermRead(true) .setPermRun(true) .setPermissionType(PermissionTypeEnum.ROW) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setCanShow(true) .setActive(true); ResourcePermission authPermission2 = ObjectUtils.clone(authPermission); authPermission2.setName("测试ue模块权限过滤").setModel(UeModule.MODEL_MODEL); authGroup.setPermissions(Lists.newArrayList(authPermission, authPermission2)); authGroup.fieldSave(AuthGroup::getPermissions); } } 这里演示的module表比较特殊,需要同时设置ModuleDefinition和UeModule这2个模型做数据过滤 2.编写占位符拦截替换逻辑 package pro.shushi.pamirs.demo.core.placeholder; import org.springframework.stereotype.Component; import pro.shushi.pamirs.user.api.AbstractPlaceHolderParser; @Component public class EmployeeModulePlaceholder extends AbstractPlaceHolderParser { public static final String PLACEHOLDER = "${employeeModulePlaceholder}"; protected String value() { // TODO…

    2023年11月24日
    98900
  • 【DM】后端部署使用Dameng数据库(达梦)

    达梦数据库配置 驱动配置 达梦数据库的服务端版本和驱动版本需要匹配,建议使用服务端安装时提供的jdbc驱动,不要使用官方maven仓库中的驱动。 报错 表 xx 中不能同时包含聚集 KEY 和大字段,建表的时候就指定非聚集主键。SELECT * FROM V$DM_INI WHERE PARA_NAME = ‘PK_WITH_CLUSTER’;SP_SET_PARA_VALUE(1,’PK_WITH_CLUSTER’,0) Maven配置 DM8(目前maven仓库最新版本) <dm.version>8.1.2.192</dm.version> <dependency> <groupId>com.dameng</groupId> <artifactId>DmJdbcDriver18</artifactId> <version>${dm.version}</version> </dependency> PS: 8.1.3.12版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 Maven配置 DM7 <dm7.version>7.6.1.120</dm7.version> <dependency> <groupId>com.dameng</groupId> <artifactId>Dm7JdbcDriver18</artifactId> <version>${dm7.version}</version> </dependency> PS: 7.6.1.120版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 离线驱动下载 Dm7JdbcDriver18-7.6.1.120.jarDmJdbcDriver18-8.1.3.12.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: dm.jdbc.driver.DmDriver # url: jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql url: jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.OracleValidConnectionChecker validationQuery: SELECT 1 FROM DUAL 连接url配置 点击查看官方文档:DM JDBC 编程指南 连接串1 jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:schema参数在低版本驱动区分大小写,高版本驱动不再区分大小写,为了避免错误,统一使用全大写。columnNameUpperCase参数与官方介绍不一致,为了避免错误,需要显式指定。 连接串2 jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:可能是未来更高版本中使用的连接串形式。 达梦数据库在不同驱动版本下需要使用不同的连接串进行处理,具体可参考下表:(使用错误的连接串将无法正常启动) Dm7JdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 7.6.0.165 2019.06.04 1 否 是 否 不支持LocalDateTime类型 7.6.1.120(建议) 2022.09.14 1 是 是 是 – DmJdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 8.1.2.192 2023.01.12 1 是 否 是 – 8.1.3.12(建议) 2023.04.17 2 是 否 是 – 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: DM version: 8 majorVersion: 8 pamirs: type: DM version: 8 majorVersion: 8 数据库版本 type version majorVersion 7-20220916 DM 7 20220916 8-20230418 DM 8 8 schedule方言配置 pamirs: event: schedule: dialect: type: DM version: 8 majorVersion: 8 type version majorVersion…

    2023年11月1日
    12.8K00
  • DsHint(指定数据源)和BatchSizeHint(指定批次数量)

    概述和使用场景 DsHintApi ,强制指定数据源, BatchSizeHintApi ,强制指定查询批量数量 API定义 DsHintApi public static DsHintApi model(String model/**模型编码*/) { // 具体实现 } public DsHintApi(Object dsKey/***数据源名称*/) { // 具体实现 } BatchSizeHintApi public static BatchSizeHintApi use(Integer batchSize) { // 具体实现 } 使用示例 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱 2、DsHintApi使用示例包裹在try里面的所有查询都会强制使用指定的数据源 // 使用方式1: try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 使用方式2: try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } 3、BatchSizeHintApi使用示例包裹在try里面的所有查询都会按照指定的batchSize进行查询 // 查询指定每次查询500跳 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); }

    2024年5月18日
    1.2K00

Leave a Reply

登录后才能评论