工作流-流程代办等页面自定义

1. 审批/填写节点的视图页面

在界面设计器中创建对应模型的表单视图,可根据业务场景需要自定义所需流程待办的审批页面
工作流-流程代办等页面自定义

2. 在审批/填写节点中选择刚创建的视图

工作流-流程代办等页面自定义
在工作流待办数据权限可在节点数据权限中可对字段设置查看、编辑、隐藏
工作流-流程代办等页面自定义

Oinone社区 作者:数式-海波原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7224.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
数式-海波的头像数式-海波数式管理员
上一篇 2024年5月13日 pm7:47
下一篇 2024年5月14日 pm5:10

相关推荐

  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    1.6K00
  • 如何扩展自有的文件存储系统

    介绍 数式Oinone默认提供了阿里云、腾讯云、华为云、又拍云、Minio和本地文件存储这几种文件存储系统,如果我们有其他的文件存储系统需要对接,或者是扩展现有的文件系统,可以通过SPI继承AbstractFileClient注册新的文件存储系统。 代码示例 这里以扩展自有的本地文件系统为例 继承了内置的本地文件存储LocalFileClient,将其中上传文件的方法重写 package pro.shushi.pamirs.demo.core.file; import org.springframework.stereotype.Component; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestMethod; import org.springframework.web.bind.annotation.ResponseBody; import org.springframework.web.bind.annotation.RestController; import org.springframework.web.multipart.MultipartFile; import org.springframework.web.multipart.support.StandardMultipartHttpServletRequest; import pro.shushi.pamirs.framework.connectors.cdn.client.LocalFileClient; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.common.spi.SPI; import javax.servlet.http.HttpServletRequest; @Slf4j @Component // 注册新的文件存储系统类型 @SPI.Service(DemoLocalFileClient.TYPE) @RestController @RequestMapping("/demo_file") public class DemoLocalFileClient extends LocalFileClient { public static final String TYPE = "DEMO_LOCAL"; @Override public CdnFileForm getFormData(String fileName) { CdnConfig cdnConfig = getCdnConfig(); CdnFileForm fileForm = new CdnFileForm(); String uniqueFileName = Spider.getDefaultExtension(CdnFileNameApi.class).getNewFilename(fileName); String fileKey = getFileKey(cdnConfig.getMainDir(), uniqueFileName); //前端获取uploadUrl,上传文件到该地址 fileForm.setUploadUrl(cdnConfig.getUploadUrl() + "/demo_file/upload"); //上传后,前端将downloadUrl返回给后端 fileForm.setDownloadUrl(getDownloadUrl(fileKey)); fileForm.setFileName(uniqueFileName); Map<String, Object> formDataJson = new HashMap<>(); formDataJson.put("uniqueFileName", uniqueFileName); formDataJson.put("key", fileKey); fileForm.setFormDataJson(JSON.toJSONString(formDataJson)); return fileForm; } @ResponseBody @RequestMapping(value = "/upload", produces = "multipart/form-data;charset=UTF-8",method = RequestMethod.POST) public String uploadFileToLocal(HttpServletRequest request) { MultipartFile file = ((StandardMultipartHttpServletRequest) request).getFile("file"); // 例如可以根据file文件类型判断哪些文件是否可以上传 return super.uploadFileToLocal(request); } } 在application.yml内配置 cdn: oss: name: 本地文件系统 # 这里的type与代码中定义的文件存储系统类型对应 type: DEMO_LOCAL bucket: pamirs uploadUrl: http://127.0.0.1:8190 downloadUrl: http://127.0.0.1:6800 validTime: 3600000 timeout: 600000 active: true referer: localFolderUrl: /Users/demo/workspace/static

    2024年10月24日
    64800
  • IWrapper、QueryWrapper和LambdaQueryWrapper使用

    条件更新updateByWrapper 通常我们在更新的时候new一个对象出来在去更新,减少更新的字段 Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE), Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId) 使用基础模型的updateById方法更新指定字段的方法: new 一下update对象出来,更新这个对象。 WorkflowUserTask userTaskUp = new WorkflowUserTask(); userTaskUp.setId(userTask.getId()); userTaskUp.setNodeContext(json); userTaskUp.updateById(); 条件删除updateByWrapper public List<T> delete(List<T> data) { List<Long> petTypeIdList = new ArrayList(); for(T item:data){ petTypeIdList.add(item.getId()); } Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList)); return data; } 构造条件查询数据 示例1: LambdaQueryWrapper拼接查询条件 private void queryPetShops() { LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery(); query.from(PetShop.MODEL_MODEL); query.setSortable(Boolean.FALSE); query.orderBy(true, true, PetShop::getId); List<PetShop> petShops2 = new PetShop().queryList(query); System.out.printf(petShops2.size() + ""); } 示例2: IWrapper拼接查询条件 private void queryPetShops() { IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery() .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L); List<PetShop> petShops4 = new PetShop().queryList(wrapper); System.out.printf(petShops4.size() + ""); } 示例3: QueryWrapper拼接查询条件 private void queryPetShops() { //使用Lambda获取字段名,防止后面改字段名漏改 String nameField = LambdaUtil.fetchFieldName(PetTalent::getName); //使用Lambda获取Clumon名,防止后面改字段名漏改 String nameColumn = PStringUtils.fieldName2Column(nameField); QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL) .eq(nameColumn, "test"); List<PetShop> petShops5 = new PetShop().queryList(wrapper2); System.out.printf(petShops5.size() + ""); } IWrapper转为LambdaQueryWrapper @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) { LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda(); // 非存储字段从QueryData中获取 Map<String, Object> queryData = queryWrapper.getQueryData(); if (null != queryData && !queryData.isEmpty()) { String codes = (String) queryData.get("codes"); if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) { wrapper.in(PetShopProxy::getCode, codes.split(",")); } } return new PetShopProxy().queryPage(page, wrapper); }

    2024年5月25日
    1.6K00
  • 【Oracle】后端部署使用Oracle数据库

    Oracle数据库配置 驱动配置 jdbc仓库 https://mvnrepository.com/artifact/com.oracle.database.jdbc/ojdbc8 Maven配置(11g版本可用) <ojdbc.version>23.2.0.0</ojdbc.version> <dependency> <groupId>com.oracle.database.jdbc</groupId> <artifactId>ojdbc8</artifactId> <version>${ojdbc.version}</version> </dependency> JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: oracle.jdbc.OracleDriver url: jdbc:oracle:thin:@//127.0.0.1:1521/orcl username: YOUR_SCHEMA_NAME password: xxxxxx Oracle默认为每个用户创建了一个与当前用户名同名的模式,每个用户应该只使用该模式(DBA用户除外),因此平台使用Oracle时应该通过username处指定与该模式同名的用户名来指定模式。(Oracle多数据源时每一个数据库创建一个用户) 创建用户时用户名应全大写。 连接url配置 官方文档 https://odbc.postgresql.org/docs/config-opt.html url格式 jdbc:oracle:thin:@//ip:端口号/服务名或SID 每一个Oracle进程默认为一个Oracle数据库实例,使用服务名或sid登录该Oralce数据库实例。一个Oracle sid 对应一个数据库实例,而一个服务名可以标识多个数据库实例。远程连接时推荐使用服务名进行连接。可以在安装Oracle的机器上打开SQLPlus,用SYSTEM用户登录上去后使用SELECT SYS_CONTEXT('USERENV', 'INSTANCE_NAME') AS SID FROM DUAL;查询登录使用的sid;也可以使用SELECT VALUE AS SERVICE_NAME FROM V$PARAMETER WHERE NAME = 'service_names';查询登录使用的服务名。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: Oracle version: 11.2 major-version: 11g pamirs: type: Oracle version: 11.2 major-version: 11g plus: configuration: jdbc-type-for-null: "NULL" using-model-as-property: true using-statement-handler-dialect: true mapper: batch: useAffectRows global: table-pattern: '${table_30}' column-pattern: '${column_30}' 数据库版本 type version majorVersion 11g – 11.2.0.1.0 Oracle 11.2 11g 12c – 12.2.0.1.0 Oracle 12.2 12c PS:由于方言开发环境为Oracle Database 11g Enterprise Edition Release 11.2.0.1.0版本,其他类似版本(11.2.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: Oracle version: 11.2 major-version: 11g 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (CAST(SYSTIMESTAMP AS DATE) – TO_DATE('1970-01-01 08:00:00', 'YYYY-MM-DD HH24:MI:SS')) * 8640000000000 Oracle数据库用户初始化及授权 — 以下命令均使用dba账户执行 — 创建用户 ONE_TEST (用户名需全大写) 密码 123456 CREATE USER ONE_TEST IDENTIFIED BY 123456; — 解锁用户 ALTER USER ONE_TEST ACCOUNT UNLOCK; — 将用户的默认表空间设置为USERS,临时表空间设置为TEMP ALTER USER ONE_TEST DEFAULT TABLESPACE USERS; ALTER USER ONE_TEST TEMPORARY TABLESPACE TEMP; — 可以用以下命令查询某用户的表空间: SELECT…

    2025年7月10日
    31300
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.1K00

Leave a Reply

登录后才能评论