分库分表与自定义分表规则

总体介绍

  • Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/

  • 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。

  • 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly

配置分表策略

  1. 配置ShardingModel模型走分库分表的数据源pamirsSharding
  2. 为pamirsSharding配置数据源以及sharding规则
    a. pamirs.sharding.define用于oinone的数据库表创建用
    b. pamirs.sharding.rule用于分表规则配置
  3. 为pamirsSharding配置数据源以及sharding规则

    1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs
      ds-map:
        base: base
      modelDsMap:
        "[demo.ShardingModel]": pamirsSharding  #配置模型对应的库

2)分库分表规则配置

pamirs: 
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.ShardingModel]":
          tables: 0..7
          table-separator: _
    rule:
      pamirsSharding: #配置pamirsSharding库的分库分表规则
        actual-ds:
          - pamirs  #申明pamirsSharding库对应的pamirs数据源
        sharding-rules:
          # Configure sharding rule ,以下配置跟sharding-jdbc配置一致
          - tables:
              demo_core_sharding_model: #demo_core_sharding_model表规则配置
                actualDataNodes: pamirs.demo_core_sharding_model_${0..7}
                tableStrategy:
                  standard:
                    shardingColumn: user_id
                    shardingAlgorithmName: table_inline
            shardingAlgorithms:
              table_inline:
                type: INLINE
                props:
                  algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)}
        props:
          sql.show: true

自定义规则

  • 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。
  • 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。

自定义分表规则示例

示例1:按月份分表(DATE_MONTH )

package pro.shushi.pamirs.demo.core.sharding;

import cn.hutool.core.date.DateUtil;
import com.google.common.collect.Range;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.*;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) {
        Date date = preciseShardingValue.getValue();
        String suffix = "_" + (DateUtil.month(date) + 1);
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) {
        List<String> list = new ArrayList<>();
        log.info(rangeShardingValue.toString());
        Range<Date> valueRange = rangeShardingValue.getValueRange();
        Date lowerDate = valueRange.lowerEndpoint();
        Date upperDate = valueRange.upperEndpoint();
        Integer begin = DateUtil.month(lowerDate) + 1;
        Integer end = DateUtil.month(upperDate) + 1;
        TreeSet<String> suffixList = ShardingUtils.getSuffixListForRange(begin, end);
        for (String tableName : availableTargetNames) {
            if (containTableName(suffixList, tableName)) {
                list.add(tableName);
            }
        }
        return list;
    }

    private boolean containTableName(Set<String> suffixList, String tableName) {
        boolean flag = false;
        for (String s : suffixList) {
            if (tableName.endsWith(s)) {
                flag = true;
                break;
            }
        }
        return flag;
    }

    @Override
    public void init() {

    }

    @Override
    public String getType() {
        return "DATE_MONTH";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }
}

示例2:按特定字段截取去取模分表

package pro.shushi.pamirs.demo.core.sharding;

import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.Collection;
import java.util.Properties;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class AppUserCodeShardingAlgorithm implements StandardShardingAlgorithm<String> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<String> preciseShardingValue) {
        String appUserCode = preciseShardingValue.getValue();
        String suffix = "_" + Long.parseLong(appUserCode.substring(1)) % 21;
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(final Collection<String> availableTargetNames, final RangeShardingValue<String> shardingValue) {
        return availableTargetNames;
    }

    @Override
    public String getType() {
        return "APP_USER_CODE_TYPE";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }

    @Override
    public void init() {

    }
}

使用自定义分表策略

1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs_biz
      ds-map:
        base: base
        demo_core: pamirs
      modelDsMap:
        "[demo.record.MsgRecode]": pamirsSharding

2)分库分表规则配置

pamirs:
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.record.MsgRecode]":
          tables: 0..20
          table-separator: _
    rule:
      pamirsSharding:
        actual-ds:
          - pamirs
        sharding-rules:
          - tables:
              demo_core_record_msg_recode:
                actualDataNodes: pamirs.demo_core_record_msg_recode_${0..20}
                tableStrategy:
                  standard:
                    shardingColumn: app_user_code
                    shardingAlgorithmName: app_user_code_table_algorithm
            shardingAlgorithms:
              app_user_code_table_algorithm:
                type: APP_USER_CODE_TYPE
                props:
                  strategy: STANDARD
                  algorithmClassName:
                    pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm

配置自定义规则SPI

分库分表规则SPI

在resources/META-INF/services 配置 org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm
pro.shushi.pamirs.demo.core.sharding.DateMonthShardingAlgorithm

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7155.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月9日 pm3:56
下一篇 2024年5月13日 pm7:06

相关推荐

  • IWrapper、QueryWrapper和LambdaQueryWrapper使用

    条件更新updateByWrapper 通常我们在更新的时候new一个对象出来在去更新,减少更新的字段 Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE), Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId) 使用基础模型的updateById方法更新指定字段的方法: new 一下update对象出来,更新这个对象。 WorkflowUserTask userTaskUp = new WorkflowUserTask(); userTaskUp.setId(userTask.getId()); userTaskUp.setNodeContext(json); userTaskUp.updateById(); 条件删除updateByWrapper public List<T> delete(List<T> data) { List<Long> petTypeIdList = new ArrayList(); for(T item:data){ petTypeIdList.add(item.getId()); } Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList)); return data; } 构造条件查询数据 示例1: LambdaQueryWrapper拼接查询条件 private void queryPetShops() { LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery(); query.from(PetShop.MODEL_MODEL); query.setSortable(Boolean.FALSE); query.orderBy(true, true, PetShop::getId); List<PetShop> petShops2 = new PetShop().queryList(query); System.out.printf(petShops2.size() + ""); } 示例2: IWrapper拼接查询条件 private void queryPetShops() { IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery() .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L); List<PetShop> petShops4 = new PetShop().queryList(wrapper); System.out.printf(petShops4.size() + ""); } 示例3: QueryWrapper拼接查询条件 private void queryPetShops() { //使用Lambda获取字段名,防止后面改字段名漏改 String nameField = LambdaUtil.fetchFieldName(PetTalent::getName); //使用Lambda获取Clumon名,防止后面改字段名漏改 String nameColumn = PStringUtils.fieldName2Column(nameField); QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL) .eq(nameColumn, "test"); List<PetShop> petShops5 = new PetShop().queryList(wrapper2); System.out.printf(petShops5.size() + ""); } IWrapper转为LambdaQueryWrapper @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) { LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda(); // 非存储字段从QueryData中获取 Map<String, Object> queryData = queryWrapper.getQueryData(); if (null != queryData && !queryData.isEmpty()) { String codes = (String) queryData.get("codes"); if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) { wrapper.in(PetShopProxy::getCode, codes.split(",")); } } return new PetShopProxy().queryPage(page, wrapper); }

    2024年5月25日
    1.8K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    88500
  • 如何选择适合的模型类型?

    介绍 通过Oinone 7天从入门到精通的模型的类型章节我们可以知道模型有抽象模型、存储模型、代理模型、传输模型这四种。但是在在定义模型的时候我们可能不知道该如何选择类型,下面结合业务场景为大家讲解几种模型的典型使用场景。 抽象模型 抽象模型往往是提供公共能力和字段的模型,它本身不会直接用于构建协议和基础设施(如表结构等)。 场景:猫、鸟都继承自动物这个抽象模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.sys.Base; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Base @Model.model(AbstractAnimal.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.ABSTRACT) @Model(displayName = "动物") public abstract class AbstractAnimal extends IdModel { public static final String MODEL_MODEL = "demo.AbstractAnimal"; @Field.String @Field(displayName = "名称") private String name; @Field.String @Field(displayName = "颜色") private String color; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Cat.MODEL_MODEL) @Model(displayName = "猫") public class Cat extends AbstractAnimal { private static final long serialVersionUID = -5104390780952634397L; public static final String MODEL_MODEL = "demo.Cat"; @Field.Integer @Field(displayName = "尾巴长度") private Integer tailLength; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Bird.MODEL_MODEL) @Model(displayName = "鸟") public class Bird extends AbstractAnimal { private static final long serialVersionUID = -5144390780952634397L; public static final String MODEL_MODEL = "demo.Bird"; @Field.Integer @Field(displayName = "翼展宽度") private Integer wingSpanWidth; } 存储模型 存储模型用于定义数据表结构和数据的增删改查(数据管理器)功能,是直接与连接器进行交互的数据容器。 场景:存储模型对应传统开发模式中的数据表,上面例子中的Cat和Birdd都属于传输模型,由于模型定义的注解@Model.Advanced(type = ModelTypeEnum.STORE)默认值就是存储模型,所以一般不用手动指定 代理模型 代理模型是用于代理存储模型的数据管理器能力,同时又可以扩展出非存储数据信息的交互功能的模型。 场景一:隔离数据权限 场景二:增强列表的搜索项 场景三:导入导出的时候增加其他特殊信息 场景四:重写下拉组件的查询逻辑做数据过滤 传输模型 传输模型不会在数据库生成的表,只是作为数据的传输使用,跟传统开发模式中的DTO有一点相似。 场景一:批量处理数据 场景二:处理一些跟数据表无关的操作,如:清理指定业务的缓存、查看一些系统监控信息,可以根据业务信息建立对应的传输模型,在传输模型上创建action动作 场景三:通过传输模型完成复杂页面数据传输

    2024年4月7日
    1.4K00
  • 自定义数据权限拦截处理

    业务场景 公司给员工对哪些模块有访问权限,这个时候就需要在员工访问模块表的时候做数据过滤, 解决方案 我们可以通过平台提供的数据过滤占位符解决这个问题,新建一条数据行权限,过滤语句条件是占位符,再编写占位符的解析逻辑 1.初始化权限基础数据 package pro.shushi.pamirs.demo.core.init; import com.google.common.collect.Lists; import org.springframework.core.annotation.Order; import org.springframework.stereotype.Component; import pro.shushi.pamirs.auth.api.constants.AuthConstants; import pro.shushi.pamirs.auth.api.enmu.AuthGroupTypeEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionDataSourceEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionTypeEnum; import pro.shushi.pamirs.auth.api.model.AuthGroup; import pro.shushi.pamirs.auth.api.model.AuthRole; import pro.shushi.pamirs.auth.api.model.ResourcePermission; import pro.shushi.pamirs.boot.base.model.UeModule; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.api.init.InstallDataInit; import pro.shushi.pamirs.boot.common.api.init.UpgradeDataInit; import pro.shushi.pamirs.demo.api.DemoModule; import pro.shushi.pamirs.demo.core.placeholder.EmployeeModulePlaceholder; import pro.shushi.pamirs.framework.common.utils.ObjectUtils; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import java.util.Collections; import java.util.List; @Slf4j @Component @Order(0) public class DemoModuleBizInit implements InstallDataInit, UpgradeDataInit { @Override public List<String> modules() { return Collections.singletonList(DemoModule.MODULE_MODULE); } @Override public int priority() { return 0; } @Override public boolean init(AppLifecycleCommand command, String version) { this.initAuth(); return true; } @Override public boolean upgrade(AppLifecycleCommand command, String version, String existVersion) { this.initAuth(); return true; } private void initAuth() { AuthGroup authGroup = new AuthGroup(); authGroup.setName("测试权限组") .setDisplayName("测试权限组") .setType(AuthGroupTypeEnum.RUNTIME) .setActive(true); authGroup.createOrUpdate(); AuthRole authRole = new AuthRole(); authRole.setCode("TEST_ROLE_1") .setName("测试角色") .setRoleTypeCode(AuthConstants.ROLE_SYSTEM_TYPE_CODE) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setActive(true); authRole.createOrUpdate(); authRole.setGroups(Lists.newArrayList(authGroup)); authRole.fieldSave(AuthRole::getGroups); ResourcePermission authPermission = new ResourcePermission(); authPermission.setName("测试模块权限过滤") .setDomainExp(EmployeeModulePlaceholder.PLACEHOLDER) .setModel(ModuleDefinition.MODEL_MODEL) .setPermRead(true) .setPermRun(true) .setPermissionType(PermissionTypeEnum.ROW) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setCanShow(true) .setActive(true); ResourcePermission authPermission2 = ObjectUtils.clone(authPermission); authPermission2.setName("测试ue模块权限过滤").setModel(UeModule.MODEL_MODEL); authGroup.setPermissions(Lists.newArrayList(authPermission, authPermission2)); authGroup.fieldSave(AuthGroup::getPermissions); } } 这里演示的module表比较特殊,需要同时设置ModuleDefinition和UeModule这2个模型做数据过滤 2.编写占位符拦截替换逻辑 package pro.shushi.pamirs.demo.core.placeholder; import org.springframework.stereotype.Component; import pro.shushi.pamirs.user.api.AbstractPlaceHolderParser; @Component public class EmployeeModulePlaceholder extends AbstractPlaceHolderParser { public static final String PLACEHOLDER = "${employeeModulePlaceholder}"; protected String value() { // TODO…

    2023年11月24日
    1.0K00
  • 自定义审批方式、自定义审批节点名称

    @Model.model(审批模型.MODEL_MODEL) @Component public class 审批模型Action { @Function @Function.Advanced(category = FunctionCategoryEnum.CUSTOM_DESIGNER, displayName = "测试自定义审批类型") public WorkflowSignTypeEnum signType(String json) { // json为业务数据,可用JsonUtils转换 return WorkflowSignTypeEnum.COUNTERSIGN_ONEAGREE_ONEREJUST; } @Function @Function.Advanced(category = FunctionCategoryEnum.CUSTOM_DESIGNER, displayName = "测试自定义审批名称") public String customApprovalName() { return UUID.randomUUID().toString(); } }

    2023年12月5日
    1.5K00

Leave a Reply

登录后才能评论