分库分表与自定义分表规则

总体介绍

  • Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/

  • 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。

  • 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly

配置分表策略

  1. 配置ShardingModel模型走分库分表的数据源pamirsSharding
  2. 为pamirsSharding配置数据源以及sharding规则
    a. pamirs.sharding.define用于oinone的数据库表创建用
    b. pamirs.sharding.rule用于分表规则配置
  3. 为pamirsSharding配置数据源以及sharding规则

    1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs
      ds-map:
        base: base
      modelDsMap:
        "[demo.ShardingModel]": pamirsSharding  #配置模型对应的库

2)分库分表规则配置

pamirs: 
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.ShardingModel]":
          tables: 0..7
          table-separator: _
    rule:
      pamirsSharding: #配置pamirsSharding库的分库分表规则
        actual-ds:
          - pamirs  #申明pamirsSharding库对应的pamirs数据源
        sharding-rules:
          # Configure sharding rule ,以下配置跟sharding-jdbc配置一致
          - tables:
              demo_core_sharding_model: #demo_core_sharding_model表规则配置
                actualDataNodes: pamirs.demo_core_sharding_model_${0..7}
                tableStrategy:
                  standard:
                    shardingColumn: user_id
                    shardingAlgorithmName: table_inline
            shardingAlgorithms:
              table_inline:
                type: INLINE
                props:
                  algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)}
        props:
          sql.show: true

自定义规则

  • 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。
  • 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。

自定义分表规则示例

示例1:按月份分表(DATE_MONTH )

package pro.shushi.pamirs.demo.core.sharding;

import cn.hutool.core.date.DateUtil;
import com.google.common.collect.Range;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.*;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) {
        Date date = preciseShardingValue.getValue();
        String suffix = "_" + (DateUtil.month(date) + 1);
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) {
        List<String> list = new ArrayList<>();
        log.info(rangeShardingValue.toString());
        Range<Date> valueRange = rangeShardingValue.getValueRange();
        Date lowerDate = valueRange.lowerEndpoint();
        Date upperDate = valueRange.upperEndpoint();
        Integer begin = DateUtil.month(lowerDate) + 1;
        Integer end = DateUtil.month(upperDate) + 1;
        TreeSet<String> suffixList = ShardingUtils.getSuffixListForRange(begin, end);
        for (String tableName : availableTargetNames) {
            if (containTableName(suffixList, tableName)) {
                list.add(tableName);
            }
        }
        return list;
    }

    private boolean containTableName(Set<String> suffixList, String tableName) {
        boolean flag = false;
        for (String s : suffixList) {
            if (tableName.endsWith(s)) {
                flag = true;
                break;
            }
        }
        return flag;
    }

    @Override
    public void init() {

    }

    @Override
    public String getType() {
        return "DATE_MONTH";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }
}

示例2:按特定字段截取去取模分表

package pro.shushi.pamirs.demo.core.sharding;

import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.Collection;
import java.util.Properties;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class AppUserCodeShardingAlgorithm implements StandardShardingAlgorithm<String> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<String> preciseShardingValue) {
        String appUserCode = preciseShardingValue.getValue();
        String suffix = "_" + Long.parseLong(appUserCode.substring(1)) % 21;
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(final Collection<String> availableTargetNames, final RangeShardingValue<String> shardingValue) {
        return availableTargetNames;
    }

    @Override
    public String getType() {
        return "APP_USER_CODE_TYPE";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }

    @Override
    public void init() {

    }
}

使用自定义分表策略

1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs_biz
      ds-map:
        base: base
        demo_core: pamirs
      modelDsMap:
        "[demo.record.MsgRecode]": pamirsSharding

2)分库分表规则配置

pamirs:
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.record.MsgRecode]":
          tables: 0..20
          table-separator: _
    rule:
      pamirsSharding:
        actual-ds:
          - pamirs
        sharding-rules:
          - tables:
              demo_core_record_msg_recode:
                actualDataNodes: pamirs.demo_core_record_msg_recode_${0..20}
                tableStrategy:
                  standard:
                    shardingColumn: app_user_code
                    shardingAlgorithmName: app_user_code_table_algorithm
            shardingAlgorithms:
              app_user_code_table_algorithm:
                type: APP_USER_CODE_TYPE
                props:
                  strategy: STANDARD
                  algorithmClassName:
                    pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm

配置自定义规则SPI

分库分表规则SPI

在resources/META-INF/services 配置 org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm
pro.shushi.pamirs.demo.core.sharding.DateMonthShardingAlgorithm

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7155.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月9日 pm3:56
下一篇 2024年5月13日 pm7:06

相关推荐

  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.4K00
  • Oinone环境保护(v5.2.3以上)

    概述 Oinone平台为合作伙伴提供了环境保护功能,以确保在一套环境可以在较为安全前提下修改配置文件,启动多个JVM等部署操作。 本章内容主要介绍与环境保护功能相关的启动参数。 名词解释 本地开发环境:开发人员在本地启动业务工程的环境 公共环境:包含设计器镜像和业务工程的环境 环境保护参数介绍 【注意】参数是加在程序实参 (Program arguments)上,通常可能错误的加在Active Profiles上了 -PenvProtected=${value} 是否启用环境保护,默认为true。 环境保护是通过与最近一次保存在数据库的base_platform_environment表中数据进行比对,并根据每个参数的配置特性进行判断,在启动时将有错误的内容打印在启动日志中,以便于开发者进行问题排查。 除此之外,环境保护功能还提供了一些生产配置的优化建议,开发者可以在启动时关注这些日志,从而对生产环境的配置进行调优。 -PsaveEnvironments=${value} 是否将此次启动的环境参数保存到数据库,默认为true。 在某些特殊情况下,为了避免公共环境中的保护参数发生不必要的变化,我们可以选择不保存此次启动时的配置参数到数据库中,这样就不会影响其他JVM启动时发生校验失败而无法启动的问题。 -PstrictProtected=${value} 是否使用严格校验模式,默认为false 通常我们建议在公共环境启用严格校验模式,这样可以最大程度的保护公共环境的元数据不受其他环境干扰。 PS:在启用严格校验模式时,需避免内外网使用不同连接地址的场景。如无法避免,则无法启用严格校验模式。 常见问题 需要迁移数据库,并更换了数据库连接地址该如何操作? 将原有数据库迁移到新数据库。 修改配置文件中数据库的连接地址。 在启动脚本中增加-PenvProtected=false关闭环境保护。 启动JVM服务可以看到有错误的日志提示,但不会中断本次启动。 移除启动脚本中的-PenvProtected=false或将值改为true,下次启动时将继续进行环境保护检查。 可查看数据库中base_platform_environment表中对应数据库连接配置已发生修改,此时若其他JVM在启动前未正确修改,则无法启动。 本地开发时需要修改Redis连接地址到本地,但希望不影响公共环境的使用该如何操作? PS:由于Redis中的元数据缓存是根据数据库差量进行同步的,此操作会导致公共环境在启动时无法正确刷新Redis中的元数据缓存,需要配合pamirs.distribution.session.allMetaRefresh参数进行操作。如无特殊必要,我们不建议使用该形式进行协同开发,多次修改配置会导致出错的概率增加。 本地环境首次启动时,除了修改Redis相关配置外,还需要配置pamirs.distribution.session.allMetaRefresh=true,将本地新连接的Redis进行初始化。 在本地启动时,增加-PenvProtected=false -PsaveEnvironments=false启动参数,以确保本地启动不会修改公共环境的配置,并且可以正常通过环境保护检测。 本地环境成功启动并正常开发功能后,需要发布到公共环境进行测试时,需要先修改公共环境中业务工程配置pamirs.distribution.session.allMetaRefresh=true后,再启动业务工程。 启动一次业务工程后,将配置还原为pamirs.distribution.session.allMetaRefresh=false。

    2024年10月21日
    1.1K00
  • 重写QueryPage时,增加额外的条件

    在需要对QueryPage增加额外的查询条件,比如DemoItem增加只展示创建人为当前用户的数据 @Function.Advanced(type = FunctionTypeEnum.QUERY, displayName = "查询列表") @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.LOCAL, FunctionOpenEnum.REMOTE, FunctionOpenEnum.API}) public Pagination<DemoItem> queryPage(Pagination<DemoItem> page, IWrapper<DemoItem> queryWrapper) { LambdaQueryWrapper<DemoItem> qw = ((QueryWrapper<DemoItem>) queryWrapper).lambda(); qw.eq(DemoItem::getCreateUid, PamirsSession.getUserId()); return demoItemService.queryPage(page, qw); }

    2023年11月1日
    80500
  • 模型字段之序列化方式

    本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。 字段序列化方式说明 序列化方式 说明 备注 JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项 DOT 点拼接集合元素 COMMA 逗号拼接集合元素 BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断 字段序列化方式举例 1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。 @Model.model(PetItem.MODEL_MODEL) @Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"}) public class PetItem extends AbstractDemoCodeModel{ public static final String MODEL_MODEL="demo.PetItem"; @Field(displayName = "品种") @Field.many2one @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"}) private PetType type; @Field(displayName = "品种类型",invisible = true) private Long typeId; @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE) @Field.Advanced(columnDefinition = "varchar(1024)") private List<PetItemDetail> petItemDetails; @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true) @Field.Advanced(columnDefinition = "varchar(1024)") private List<String> tags; } 字段序列化注意点 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。 使用Field#serialize属性指定序列化方式,默认为JSON。 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录 注册自己的序列化器 注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。 package pro.shushi.pamirs.framework.compute.serialize; import org.apache.commons.lang3.StringUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer; import pro.shushi.pamirs.meta.common.constants.CharacterConstants; import pro.shushi.pamirs.meta.enmu.SerializeEnum; import pro.shushi.pamirs.meta.util.TypeUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * 点表达式序列生成处理器实现 * @author shushi@shushi.pro * @version 1.0.0 */ @SuppressWarnings("rawtypes") @Slf4j @Component public class DotSerializeProcessor implements Serializer<Object, String> { @Override public String serialize(String ltype, Object value) { if (null == value) { return null; } if (List.class.isAssignableFrom(value.getClass())) { return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT); } else { return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT); } } @SuppressWarnings("unchecked") @Override public Object deserialize(String ltype, String ltypeT, String value,…

    2024年5月24日
    1.5K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    85500

Leave a Reply

登录后才能评论