分库分表与自定义分表规则

总体介绍

  • Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/

  • 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。

  • 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly

配置分表策略

  1. 配置ShardingModel模型走分库分表的数据源pamirsSharding
  2. 为pamirsSharding配置数据源以及sharding规则
    a. pamirs.sharding.define用于oinone的数据库表创建用
    b. pamirs.sharding.rule用于分表规则配置
  3. 为pamirsSharding配置数据源以及sharding规则

    1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs
      ds-map:
        base: base
      modelDsMap:
        "[demo.ShardingModel]": pamirsSharding  #配置模型对应的库

2)分库分表规则配置

pamirs: 
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.ShardingModel]":
          tables: 0..7
          table-separator: _
    rule:
      pamirsSharding: #配置pamirsSharding库的分库分表规则
        actual-ds:
          - pamirs  #申明pamirsSharding库对应的pamirs数据源
        sharding-rules:
          # Configure sharding rule ,以下配置跟sharding-jdbc配置一致
          - tables:
              demo_core_sharding_model: #demo_core_sharding_model表规则配置
                actualDataNodes: pamirs.demo_core_sharding_model_${0..7}
                tableStrategy:
                  standard:
                    shardingColumn: user_id
                    shardingAlgorithmName: table_inline
            shardingAlgorithms:
              table_inline:
                type: INLINE
                props:
                  algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)}
        props:
          sql.show: true

自定义规则

  • 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。
  • 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。

自定义分表规则示例

示例1:按月份分表(DATE_MONTH )

package pro.shushi.pamirs.demo.core.sharding;

import cn.hutool.core.date.DateUtil;
import com.google.common.collect.Range;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.*;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) {
        Date date = preciseShardingValue.getValue();
        String suffix = "_" + (DateUtil.month(date) + 1);
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) {
        List<String> list = new ArrayList<>();
        log.info(rangeShardingValue.toString());
        Range<Date> valueRange = rangeShardingValue.getValueRange();
        Date lowerDate = valueRange.lowerEndpoint();
        Date upperDate = valueRange.upperEndpoint();
        Integer begin = DateUtil.month(lowerDate) + 1;
        Integer end = DateUtil.month(upperDate) + 1;
        TreeSet<String> suffixList = ShardingUtils.getSuffixListForRange(begin, end);
        for (String tableName : availableTargetNames) {
            if (containTableName(suffixList, tableName)) {
                list.add(tableName);
            }
        }
        return list;
    }

    private boolean containTableName(Set<String> suffixList, String tableName) {
        boolean flag = false;
        for (String s : suffixList) {
            if (tableName.endsWith(s)) {
                flag = true;
                break;
            }
        }
        return flag;
    }

    @Override
    public void init() {

    }

    @Override
    public String getType() {
        return "DATE_MONTH";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }
}

示例2:按特定字段截取去取模分表

package pro.shushi.pamirs.demo.core.sharding;

import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.Collection;
import java.util.Properties;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class AppUserCodeShardingAlgorithm implements StandardShardingAlgorithm<String> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<String> preciseShardingValue) {
        String appUserCode = preciseShardingValue.getValue();
        String suffix = "_" + Long.parseLong(appUserCode.substring(1)) % 21;
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(final Collection<String> availableTargetNames, final RangeShardingValue<String> shardingValue) {
        return availableTargetNames;
    }

    @Override
    public String getType() {
        return "APP_USER_CODE_TYPE";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }

    @Override
    public void init() {

    }
}

使用自定义分表策略

1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs_biz
      ds-map:
        base: base
        demo_core: pamirs
      modelDsMap:
        "[demo.record.MsgRecode]": pamirsSharding

2)分库分表规则配置

pamirs:
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.record.MsgRecode]":
          tables: 0..20
          table-separator: _
    rule:
      pamirsSharding:
        actual-ds:
          - pamirs
        sharding-rules:
          - tables:
              demo_core_record_msg_recode:
                actualDataNodes: pamirs.demo_core_record_msg_recode_${0..20}
                tableStrategy:
                  standard:
                    shardingColumn: app_user_code
                    shardingAlgorithmName: app_user_code_table_algorithm
            shardingAlgorithms:
              app_user_code_table_algorithm:
                type: APP_USER_CODE_TYPE
                props:
                  strategy: STANDARD
                  algorithmClassName:
                    pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm

配置自定义规则SPI

分库分表规则SPI

在resources/META-INF/services 配置 org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm
pro.shushi.pamirs.demo.core.sharding.DateMonthShardingAlgorithm

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7155.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月9日 pm3:56
下一篇 2024年5月13日 pm7:06

相关推荐

  • DsHint(指定数据源)和BatchSizeHint(指定批次数量)

    概述和使用场景 DsHintApi ,强制指定数据源, BatchSizeHintApi ,强制指定查询批量数量 API定义 DsHintApi public static DsHintApi model(String model/**模型编码*/) { // 具体实现 } public DsHintApi(Object dsKey/***数据源名称*/) { // 具体实现 } BatchSizeHintApi public static BatchSizeHintApi use(Integer batchSize) { // 具体实现 } 使用示例 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱 2、DsHintApi使用示例包裹在try里面的所有查询都会强制使用指定的数据源 // 使用方式1: try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 使用方式2: try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } 3、BatchSizeHintApi使用示例包裹在try里面的所有查询都会按照指定的batchSize进行查询 // 查询指定每次查询500跳 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); }

    2024年5月18日
    1.4K00
  • 工作流引入流程概览与流程监控

    流程概览依赖说明 使用 流程概览 功能前,需要在项目中引入 pamirs-workflow-datavi-core、 pamirs-data-visualization-core依赖,并启动datavi模块: <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-datavi-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.data.visualization</groupId> <artifactId>pamirs-data-visualization-core</artifactId> </dependency> 警告: 在 oinone 平台启用「流程概览」能力时,应用启动模块一旦引入 pamirs-workflow-api/core,必须同时引入 pamirs-workflow-datavi-api/core。在多启动模块架构下,严禁出现仅部分启动模块引入 pamirs-workflow-core 而未引入 pamirs-workflow-datavi-core 的情况,否则将导致流程概览相关元数据计算异常,出现删表等情况。 流程概览配置项 流程概览页面内置缓存机制,可通过配置项调整缓存刷新周期及图表展示的数据条数: pamirs: workflow: dashboard: cache-time: 10 # 流程概览缓存刷新时间(单位:分钟),默认 10 分钟 page-size: 10 # 流程运行分析中 4 个图表的展示数量,默认查询前 10 条数据 统计指标说明 引入 pamirs-workflow-datavi-core 依赖后,系统会按照以下规则进行数据同步: 当日数据同步:每小时同步一次当日数据; 昨日数据同步:次日凌晨同步前一日数据。 由于在引入依赖后才会开始执行数据同步,统计指标页提供了「同步」按钮,可用于对历史数据进行补采。即使不执行历史同步,也不会影响核心业务流程,仅会影响统计数据和图表的展示效果。 统计指标数据主要用于 支撑 流程概览 和 流程监控 中的统计图表展示; 为数据分析与可视化提供基础数据。 上述统计数据对工作流的审批、流转等核心业务无任何影响。如有需要,也可以基于流程监控的数据,配合数据可视化设计器,自定义构建符合业务需求的展示页面。

    2025年11月17日
    27000
  • 首次登录修改密码和自定义密码规则等

    场景描述 在某些场景下,可能需要实现 用户首次登录强制修改密码的功能,或者存在修改平台默认密码等校验规则等需求;本文将讲解不改变平台代码的情况下,如何实现这些功能需求。 首次登录修改密码 方案概述 自定义User增加是否是第一次登录的属性,登录后执行一个扩展点。 判断是否是一次登录,如果是则返回对应的状态码,前端根据状态码重定向到修改密码的页面。修改完成则充值第一次登录的标识。 PS:首次登录的标识平台前端已默认实现 扩展PamirsUser(例如:DemoUser) /** * @author wangxian */ @Model.model(DemoUser.MODEL_MODEL) @Model(displayName = "用户", labelFields = {"nickname"}) @Model.Advanced(index = {"companyId"}) public class DemoUser extends PamirsUser { public static final String MODEL_MODEL = "demo.DemoUser"; @Field.Integer @Field.Advanced(columnDefinition = "bigint DEFAULT '0'") @Field(displayName = "公司ID", invisible = true) private Long companyId; /** * 默认true->1 */ @Field.Boolean @Field.Advanced(columnDefinition = "tinyint(1) DEFAULT '1'") @Field(displayName = "是否首次登录") private Boolean firstLogin; } 定义扩展点接口(实际项目按需要增加和删减接口的定义) import pro.shushi.pamirs.meta.annotation.Ext; import pro.shushi.pamirs.meta.annotation.ExtPoint; import pro.shushi.pamirs.user.api.model.tmodel.PamirsUserTransient; @Ext(PamirsUserTransient.class) public interface PamirsUserTransientExtPoint { @ExtPoint PamirsUserTransient loginAfter(PamirsUserTransient user); @ExtPoint PamirsUserTransient loginCustomAfter(PamirsUserTransient user); @ExtPoint PamirsUserTransient firstResetPasswordAfter(PamirsUserTransient user); @ExtPoint PamirsUserTransient firstResetPasswordBefore(PamirsUserTransient user); @ExtPoint PamirsUserTransient modifyCurrentUserPasswordAfter(PamirsUserTransient user); @ExtPoint PamirsUserTransient modifyCurrentUserPasswordBefore(PamirsUserTransient user); } 编写扩展点实现(例如:DemoUserLoginExtPoint) @Order(0) @Component @Ext(PamirsUserTransient.class) @Slf4j public class DemoUserLoginExtPoint implements PamirsUserTransientExtPoint { @Override @ExtPoint.Implement public PamirsUserTransient loginAfter(PamirsUserTransient user) { return checkFirstLogin(user); } private PamirsUserTransient checkFirstLogin(PamirsUserTransient user) { //首次登录需要修改密码 Long userId = PamirsSession.getUserId(); if (userId == null) { return user; } DemoUser companyUser = new DemoUser().queryById(userId); // 判断用户是否是第一次登录,如果是第一次登录,需要返回错误码,页面重新向登录 Boolean isFirst = companyUser.getFirstLogin(); if (isFirst) { //如果是第一次登录,返回一个标识给前端。 // 首次登录的标识平台已默认实现 user.setBroken(Boolean.TRUE); user.setErrorCode(UserExpEnumerate.USER_FIRST_LOGIN_ERROR.code()); return user; } return user; } @Override public PamirsUserTransient loginCustomAfter(PamirsUserTransient user) { return checkFirstLogin(user); } @Override…

    2024年5月25日
    5.3K00
  • 【MSSQL】后端部署使用MSSQL数据库(SQLServer)

    MSSQL数据库配置 驱动配置 Maven配置(2017版本可用) <mssql.version>9.4.0.jre8</mssql.version> <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>mssql-jdbc</artifactId> <version>${mssql.version}</version> </dependency> 离线驱动下载 mssql-jdbc-7.4.1.jre8.jarmssql-jdbc-9.4.0.jre8.jarmssql-jdbc-12.2.0.jre8.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.microsoft.sqlserver.jdbc.SQLServerDriver url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=base username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 暂无官方资料 url格式 jdbc:sqlserver://${host}:${port};DatabaseName=${database} 在jdbc连接配置时,${database}必须配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: MSSQL version: 2017 major-version: 2017 pamirs: type: MSSQL version: 2017 major-version: 2017 数据库版本 type version majorVersion 2017 MSSQL 2017 2017 PS:由于方言开发环境为2017版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: MSSQL version: 2017 major-version: 2017 type version majorVersion MSSQL 2017 2017 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: CAST(DATEDIFF(S, CAST('1970-01-01 00:00:00' AS DATETIME), GETUTCDATE()) AS BIGINT) * 1000000 + DATEPART(NS, SYSUTCDATETIME()) / 100 MSSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE LOGIN [root] WITH PASSWORD = 'password'; — if using mssql database, this authorization is required. ALTER SERVER ROLE [sysadmin] ADD MEMBER [root];

    2024年10月18日
    1.1K00
  • 环境运行时Jar版本控制

    环境运行时Jar版本控制 前景 为了避免基于低代码定义产生的元数据错乱。因此产生了运行时Jar版本检查功能。 现象 如果当前运行时依赖的Ja版本低于已安装版本,启动时会有如下类似信息提示: 解决 按照提示升级依赖Jar版本 通过启动参数 -PgoBack=true 强制覆盖安装当前运行时版本 java -jar 方式 java -jar xxx.jar -PgoBack=true [其他参数] mvn spring-boot run 方式 mvn clean compile spring-boot:run -Dspring-boot.run.arguments=”-PgoBack=true [其他参数]”

    2025年3月10日
    90400

Leave a Reply

登录后才能评论