分库分表与自定义分表规则

总体介绍

  • Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/

  • 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。

  • 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly

配置分表策略

  1. 配置ShardingModel模型走分库分表的数据源pamirsSharding
  2. 为pamirsSharding配置数据源以及sharding规则
    a. pamirs.sharding.define用于oinone的数据库表创建用
    b. pamirs.sharding.rule用于分表规则配置
  3. 为pamirsSharding配置数据源以及sharding规则

    1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs
      ds-map:
        base: base
      modelDsMap:
        "[demo.ShardingModel]": pamirsSharding  #配置模型对应的库

2)分库分表规则配置

pamirs: 
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.ShardingModel]":
          tables: 0..7
          table-separator: _
    rule:
      pamirsSharding: #配置pamirsSharding库的分库分表规则
        actual-ds:
          - pamirs  #申明pamirsSharding库对应的pamirs数据源
        sharding-rules:
          # Configure sharding rule ,以下配置跟sharding-jdbc配置一致
          - tables:
              demo_core_sharding_model: #demo_core_sharding_model表规则配置
                actualDataNodes: pamirs.demo_core_sharding_model_${0..7}
                tableStrategy:
                  standard:
                    shardingColumn: user_id
                    shardingAlgorithmName: table_inline
            shardingAlgorithms:
              table_inline:
                type: INLINE
                props:
                  algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)}
        props:
          sql.show: true

自定义规则

  • 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。
  • 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。

自定义分表规则示例

示例1:按月份分表(DATE_MONTH )

package pro.shushi.pamirs.demo.core.sharding;

import cn.hutool.core.date.DateUtil;
import com.google.common.collect.Range;
import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.*;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) {
        Date date = preciseShardingValue.getValue();
        String suffix = "_" + (DateUtil.month(date) + 1);
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) {
        List<String> list = new ArrayList<>();
        log.info(rangeShardingValue.toString());
        Range<Date> valueRange = rangeShardingValue.getValueRange();
        Date lowerDate = valueRange.lowerEndpoint();
        Date upperDate = valueRange.upperEndpoint();
        Integer begin = DateUtil.month(lowerDate) + 1;
        Integer end = DateUtil.month(upperDate) + 1;
        TreeSet<String> suffixList = ShardingUtils.getSuffixListForRange(begin, end);
        for (String tableName : availableTargetNames) {
            if (containTableName(suffixList, tableName)) {
                list.add(tableName);
            }
        }
        return list;
    }

    private boolean containTableName(Set<String> suffixList, String tableName) {
        boolean flag = false;
        for (String s : suffixList) {
            if (tableName.endsWith(s)) {
                flag = true;
                break;
            }
        }
        return flag;
    }

    @Override
    public void init() {

    }

    @Override
    public String getType() {
        return "DATE_MONTH";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }
}

示例2:按特定字段截取去取模分表

package pro.shushi.pamirs.demo.core.sharding;

import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue;
import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;

import java.util.Collection;
import java.util.Properties;

/**
 * @author wangxian
 * @version 1.0
 * @description
 */
@Component
@Slf4j
public class AppUserCodeShardingAlgorithm implements StandardShardingAlgorithm<String> {

    private Properties props;

    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<String> preciseShardingValue) {
        String appUserCode = preciseShardingValue.getValue();
        String suffix = "_" + Long.parseLong(appUserCode.substring(1)) % 21;
        for (String tableName : availableTargetNames) {
            if (tableName.endsWith(suffix)) {
                return tableName;
            }
        }
        throw new IllegalArgumentException("未找到匹配的数据表");
    }

    @Override
    public Collection<String> doSharding(final Collection<String> availableTargetNames, final RangeShardingValue<String> shardingValue) {
        return availableTargetNames;
    }

    @Override
    public String getType() {
        return "APP_USER_CODE_TYPE";
    }

    @Override
    public Properties getProps() {
        return this.props;
    }

    @Override
    public void setProps(Properties properties) {
        this.props = props;
    }

    @Override
    public void init() {

    }
}

使用自定义分表策略

1)指定模型对应数据源

pamirs:
  framework:
    system:
      system-ds-key: base
      system-models:
        - base.WorkerNode
    data:
      default-ds-key: pamirs_biz
      ds-map:
        base: base
        demo_core: pamirs
      modelDsMap:
        "[demo.record.MsgRecode]": pamirsSharding

2)分库分表规则配置

pamirs:
  sharding:
    define:
      data-sources:
        ds: pamirs
        pamirsSharding: pamirs
      models:
        "[trigger.PamirsSchedule]":
          tables: 0..13
        "[demo.record.MsgRecode]":
          tables: 0..20
          table-separator: _
    rule:
      pamirsSharding:
        actual-ds:
          - pamirs
        sharding-rules:
          - tables:
              demo_core_record_msg_recode:
                actualDataNodes: pamirs.demo_core_record_msg_recode_${0..20}
                tableStrategy:
                  standard:
                    shardingColumn: app_user_code
                    shardingAlgorithmName: app_user_code_table_algorithm
            shardingAlgorithms:
              app_user_code_table_algorithm:
                type: APP_USER_CODE_TYPE
                props:
                  strategy: STANDARD
                  algorithmClassName:
                    pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm

配置自定义规则SPI

分库分表规则SPI

在resources/META-INF/services 配置 org.apache.shardingsphere.sharding.spi.ShardingAlgorithm

pro.shushi.pamirs.demo.core.sharding.AppUserCodeShardingAlgorithm
pro.shushi.pamirs.demo.core.sharding.DateMonthShardingAlgorithm

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7155.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月9日 pm3:56
下一篇 2024年5月13日 pm7:06

相关推荐

  • Excel导入扩展点-整体导入(批量导入)

    1、【导入】在有些场景,需要获取Excel导入的整体数据,进行批量的操作或者校验 可以通过实现导入扩展点的方式实现,入参data是导入Excel的数据列表;业务可以根据实际情况进行数据校验 1)Excel模板定义,需要设置setEachImport(false) 2)导入扩展点API定义 pro.shushi.pamirs.file.api.extpoint.ExcelImportDataExtPoint#importData 3)示例代码参考: pro.shushi.pamirs.translate.extpoint.ResourceTranslationImportExtPoint#importData @Slf4j @Component @Ext(ExcelImportTask.class) public class ResourceTranslationImportExtPoint extends AbstractExcelImportDataExtPointImpl<List<ResourceTranslationItem>> { @Override //TODO 表达式,可以自定义,比如可以支持1个模型的多个【导入名称】的不同模板 @ExtPoint.Implement(expression = "importContext.definitionContext.model==\"" + ResourceTranslation.MODEL_MODEL + "\"") public Boolean importData(ExcelImportContext importContext, List<ResourceTranslationItem> dataList) { //TODO dataList就是excel导入那个sheet的所有内容 return true; } } 2、【导入】逐行导入的时候做事务控制 在模板中定义中增加事务的定义,并设置异常后回滚。参加示例代码: excel模板定义 @Component public class DemoItemImportTemplate implements ExcelTemplateInit { public static final String TEMPLATE_NAME = "商品导入模板"; @Override public List<ExcelWorkbookDefinition> generator() { //定义事务(导入处理中,只操作单个表的不需要事务定义。) //是否定义事务根据实际业务逻辑确定。比如:有些场景在导入前需要删除数据后在进行导入就需要定义事务 InitializationUtil.addTxConfig(DemoItem.MODEL_MODEL, ExcelDefinitionContext.EXCEL_TX_CONFIG_PREFIX + TEMPLATE_NAME); return Collections.singletonList( ExcelHelper.fixedHeader(DemoItem.MODEL_MODEL, TEMPLATE_NAME) .setType(ExcelTemplateTypeEnum.IMPORT) .createSheet("商品导入-sheet1") .createBlock(DemoItem.MODEL_MODEL) .addUnique(DemoItem.MODEL_MODEL,"name") .addColumn("name","名称") .addColumn("description","描述") .addColumn("itemPrice","单价") .addColumn("inventoryQuantity","库存") .build().setEachImport(true) //TODO 设置异常后回滚的标识,这个地方会回滚事务 .setHasErrorRollback(true) .setExcelImportMode(ExcelImportModeEnum.SINGLE_MODEL) ); } } 导入逻辑处理 @Slf4j @Component @Ext(ExcelImportTask.class) public class DemoItemImportExtPoint extends AbstractExcelImportDataExtPointImpl<DemoItem> implements ExcelImportDataExtPoint<DemoItem> { @Autowired private DemoItemService demoItemService; @Override @ExtPoint.Implement(expression = "importContext.definitionContext.model == \"" + DemoItem.MODEL_MODEL + "\"") public Boolean importData(ExcelImportContext importContext, DemoItem data) { ExcelImportTask importTask = importContext.getImportTask(); try { DemoItemImportTask hrExcelImportTask = new DemoItemImportTask().queryById(importTask.getId()); String publishUserName = Optional.ofNullable(hrExcelImportTask).map(DemoItemImportTask::getPublishUserName).orElse(null); data.setPublishUserName(publishUserName); demoItemService.create(data); } catch(PamirsException e) { log.error("导入异常", e); } catch (Exception e) { log.error("导入异常", e); } return Boolean.TRUE; } }

    2023年12月7日
    1.1K00
  • Oinone协同开发使用手册

    概述 Oinone平台为开发人员提供了本地环境 – 测试环境之间的协同开发模式,可以使得开发人员在本地环境中设计的模型、函数等元数据实时被测试环境使用并设计。开发人员开发完成对应页面和功能后,可以部署至测试环境直接进行测试。 本篇文章将详细介绍协同开发模式在实际开发中的应用及相关内容。 名词解释 本地环境: 开发人员的本地启动环境 测试环境: 在测试服务器上部署的业务测试环境,业务工程服务和设计器服务共用中间件 业务工程服务:在测试服务器上部署的业务工程 设计器服务: 在测试服务器上部署的设计器镜像 一套环境:以测试环境为例,业务工程服务和设计器服务共同组成一套环境 生产环境: 在生产服务器上部署的业务生产环境 环境准备 部署了一个可用的设计器服务,并能正常访问。(需参照下文启动设计器环境内容进行相应修改) 准备一个用于开发的java工程。 准备一个用于部署测试环境的服务器。 协同参数介绍 用于测试环境的参数 -PmetaProtected=${value} 启用元数据保护,只有配置相同启动参数的服务才允许对元数据进行更新。通常该命令用于设计器服务和业务工程服务,并且两个环境需使用相同的元数据保护标记(value)进行启动。本地环境不使用该命令,以防止本地环境在协同开发时意外修改测试环境元数据,导致元数据混乱。 用法 java -jar boot.jar -PmetaProtected=pamirs 用于本地环境的配置 使用命令配置ownSign(推荐) java -jar boot.jar –pamirs.distribution.session.ownSign=demo 使用yaml配置ownSign pamirs: distribution: session: allMetaRefresh: false # 启用元数据全量刷新(备用配置,如遇元数据错误或混乱,启用该配置可进行恢复,使用一次后关闭即可) ownSign: demo # 协同开发元数据隔离标记,用于区分不同开发人员的本地环境,其他环境不允许使用 启动设计器环境 docker-run启动 -e PROGRAM_ARGS=-PmetaProtected=pamirs docker-compose启动 services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: # 指定spring.profiles.active ARG_ENV: dev # 指定-Plifecycle ARG_LIFECYCLE: INSTALL # jvm参数 JVM_OPTIONS: "" # 程序参数 PROGRAM_ARGS: "-PmetaProtected=pamirs" PS: java [JVM_OPTIONS?] -jar boot.jar [PROGRAM_ARGS?] 开发流程示例图 具体使用步骤详见协同开发支持

    2024年7月24日
    1.5K00
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.3K00
  • 函数之触发与定时配置和示例

    异步任务总体介绍 函数的触发和定时在很多场景中会用到,也是一个oinone的基础能力。比如我们的流程产品中在定义流程触发时就会让用户选择模型触发还是时间触发,就是用到了函数的触发与定时能力。 触发任务TriggerTaskAction 触发任务的创建,使用sql-record模块监听mysql的binlog事件,通过rocketmq发送变更数据消息,收到MQ消息后,创建TriggerAutoTask。 触发任务的执行,使用TBSchedule拉取触发任务后,执行相应函数。 项目中引入依赖 1、项目的API工程引入依赖pamirs-core-trigger模块 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-api</artifactId> </dependency> 2、DemoModule在模块依赖定义中增加@Module(dependencies={TriggerModule.MODULE_MODULE}) @Component @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, UserModule.MODULE_MODULE, TriggerModule.MODULE_MODULE} ) @Module.module(DemoModule.MODULE_MODULE) @Module.Advanced(selfBuilt = true, application = true) @UxHomepage(PetShopProxy.MODEL_MODEL) public class DemoModule implements PamirsModule { ……其他代码 } 3、项目的boot工程引入依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> yml文件修改(applcation-xxx.yml) a. 修改pamris.event.enabled和pamris.event.schedule.enabled为trueb. pamirs_boot_modules增加启动模块:trigger、sql_record pamirs: record: sql: #改成自己路径 store: /opt/pamirs/logs … event: enabled: true schedule: enabled: true rocket-mq: namesrv-addr: 127.0.0.1:9876 boot: init: true sync: true modules: – base -…… – trigger – sql_record -…… 新建触发任务 新建PetTalentTrigger类,当PetTalent模型的数据记录被新建时触发系统做一些事情 package pro.shushi.pamirs.demo.core.trigger; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.trigger.annotation.Trigger; import pro.shushi.pamirs.trigger.enmu.TriggerConditionEnum; @Fun(PetTalent.MODEL_MODEL) @Slf4j public class PetTalentTrigger { @Function @Trigger(displayName = “PetTalent创建时触发”,name = “PetTalent#Trigger#onCreate”,condition = TriggerConditionEnum.ON_CREATE) public PetTalent onCreate(PetTalent data){ log.info(data.getName() + “,被创建”); //可以增加逻辑 return data; } } 定时任务 定时任务是一种非常常见的模式,这里就不介绍概念了,直接进入示例环节 新建PetTalentAutoTask实现ScheduleAction getInterfaceName()需要跟taskAction.setExecuteNamespace定义保持一致,都是函数的命名空间 taskAction.setExecuteFun("execute");跟执行函数名“execute”一致 TaskType需配置为CYCLE_SCHEDULE_NO_TRANSACTION_TASK,把定时任务的schedule线程分开,要不然有一个时间长的任务会导致普通异步或触发任务全部延时。 package pro.shushi.pamirs.demo.core.task; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.enmu.TimeUnitEnum; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.fun.FunctionDefinition; import pro.shushi.pamirs.middleware.schedule.api.ScheduleAction; import pro.shushi.pamirs.middleware.schedule.common.Result; import pro.shushi.pamirs.middleware.schedule.domain.ScheduleItem; import pro.shushi.pamirs.middleware.schedule.eunmeration.TaskType; import pro.shushi.pamirs.trigger.enmu.TriggerTimeAnchorEnum; import pro.shushi.pamirs.trigger.model.ScheduleTaskAction; import pro.shushi.pamirs.trigger.service.ScheduleTaskActionService; @Slf4j @Component @Fun(PetTalent.MODEL_MODEL) public class PetTalentAutoTask implements…

    2024年5月25日
    1.2K00
  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.2K00

Leave a Reply

登录后才能评论