项目中排除掉特定的Hook和扩展点

总体介绍

  • 在共库共Redis的情况下,某些场景存在需要过滤掉特定Hook和扩展点(extpoint)的情况。本文介绍排除掉的配置方法

1. Oinone如何排除特定的Hook

配置:

pamirs:
  framework:
    hook:
      excludes:
        - 排除的扩展点列表

示例:

pamirs:
  framework:
    hook:
      excludes:
        - pro.shushi.pamirs.timezone.hook.TimezoneHookBefore
        - pro.shushi.pamirs.timezone.hook.TimezoneHookAfter
        - pro.shushi.pamirs.timezone.hook.TimezoneSessionInitHook
        - pro.shushi.pamirs.translate.hook.TranslateAfterHook

2. Oinone如何排除特定的扩展点

配置

pamirs:
  framework:
    extpoint:
      excludes:
        - 排除的扩展点列表

示例:

pamirs:
  framework:
    extpoint:
      excludes:
        - pro.shushi.pamirs.demo.core.extpoint.PetCatTypeExtPoint

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7176.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月11日 am10:52
下一篇 2024年5月13日 pm7:47

相关推荐

  • 自定义数据权限拦截处理

    业务场景 公司给员工对哪些模块有访问权限,这个时候就需要在员工访问模块表的时候做数据过滤, 解决方案 我们可以通过平台提供的数据过滤占位符解决这个问题,新建一条数据行权限,过滤语句条件是占位符,再编写占位符的解析逻辑 1.初始化权限基础数据 package pro.shushi.pamirs.demo.core.init; import com.google.common.collect.Lists; import org.springframework.core.annotation.Order; import org.springframework.stereotype.Component; import pro.shushi.pamirs.auth.api.constants.AuthConstants; import pro.shushi.pamirs.auth.api.enmu.AuthGroupTypeEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionDataSourceEnum; import pro.shushi.pamirs.auth.api.enmu.PermissionTypeEnum; import pro.shushi.pamirs.auth.api.model.AuthGroup; import pro.shushi.pamirs.auth.api.model.AuthRole; import pro.shushi.pamirs.auth.api.model.ResourcePermission; import pro.shushi.pamirs.boot.base.model.UeModule; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.api.init.InstallDataInit; import pro.shushi.pamirs.boot.common.api.init.UpgradeDataInit; import pro.shushi.pamirs.demo.api.DemoModule; import pro.shushi.pamirs.demo.core.placeholder.EmployeeModulePlaceholder; import pro.shushi.pamirs.framework.common.utils.ObjectUtils; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import java.util.Collections; import java.util.List; @Slf4j @Component @Order(0) public class DemoModuleBizInit implements InstallDataInit, UpgradeDataInit { @Override public List<String> modules() { return Collections.singletonList(DemoModule.MODULE_MODULE); } @Override public int priority() { return 0; } @Override public boolean init(AppLifecycleCommand command, String version) { this.initAuth(); return true; } @Override public boolean upgrade(AppLifecycleCommand command, String version, String existVersion) { this.initAuth(); return true; } private void initAuth() { AuthGroup authGroup = new AuthGroup(); authGroup.setName("测试权限组") .setDisplayName("测试权限组") .setType(AuthGroupTypeEnum.RUNTIME) .setActive(true); authGroup.createOrUpdate(); AuthRole authRole = new AuthRole(); authRole.setCode("TEST_ROLE_1") .setName("测试角色") .setRoleTypeCode(AuthConstants.ROLE_SYSTEM_TYPE_CODE) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setActive(true); authRole.createOrUpdate(); authRole.setGroups(Lists.newArrayList(authGroup)); authRole.fieldSave(AuthRole::getGroups); ResourcePermission authPermission = new ResourcePermission(); authPermission.setName("测试模块权限过滤") .setDomainExp(EmployeeModulePlaceholder.PLACEHOLDER) .setModel(ModuleDefinition.MODEL_MODEL) .setPermRead(true) .setPermRun(true) .setPermissionType(PermissionTypeEnum.ROW) .setPermissionDataSource(PermissionDataSourceEnum.CUSTOM) .setCanShow(true) .setActive(true); ResourcePermission authPermission2 = ObjectUtils.clone(authPermission); authPermission2.setName("测试ue模块权限过滤").setModel(UeModule.MODEL_MODEL); authGroup.setPermissions(Lists.newArrayList(authPermission, authPermission2)); authGroup.fieldSave(AuthGroup::getPermissions); } } 这里演示的module表比较特殊,需要同时设置ModuleDefinition和UeModule这2个模型做数据过滤 2.编写占位符拦截替换逻辑 package pro.shushi.pamirs.demo.core.placeholder; import org.springframework.stereotype.Component; import pro.shushi.pamirs.user.api.AbstractPlaceHolderParser; @Component public class EmployeeModulePlaceholder extends AbstractPlaceHolderParser { public static final String PLACEHOLDER = "${employeeModulePlaceholder}"; protected String value() { // TODO…

    2023年11月24日
    1.1K00
  • Oinone请求调用链路

    Oinone请求调用链路 请求格式与简单流程 在Oinone中请求数据存储在请求体中,以GQL的方式进行表示,也就是GQL格式的请求。 当我们发送一个GQL格式的请求,后端会对GQL进行解析,确定想要执行的方法,并对这个方法执行过程中所用到的模型进行构建,最后返回响应。 请求 # 请求路径 pamirs/base http://127.0.0.1:8090/pamirs/base # 请求体内容 query{ petShopProxyBQuery{ sayHello(shop:{shopName:"cpc"}){ shopName } } } 解析 # 简单理解 query 操作类型 petShopProxyBQuery 模块名称 + Query sayHello 方法 fun sayHello() 可以传入参数,参数名为 shop shopName 需要得到的值 响应 # data中的内容 "data": { "petShopQuery": { "hello": { "shopName": "cpc" } } } 具体流程 Oinone是基于SpringBoot的,在Controller中处理请求 会接收所有以 /pamirs 开始的POST请求,/pamirs/后携带的是模块名 @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { …….. } 整体脉络 第四步执行中有两大重要的步骤,一步是动态构建GQL,一步是执行请求。 动态构建GQL 请求执行

    2024年12月1日
    1.1K00
  • 【KDB】后端部署使用Kingbase数据库(人大金仓/电科金仓)

    KDB数据库配置 驱动配置 Maven配置 点击查看官方驱动说明 PS:官方驱动说明中的9.0.0版本目前并未推送至公共仓库,因此使用8.6.0版本替代。 <kdb.version>8.6.0</kdb.version> <dependency> <groupId>cn.com.kingbase</groupId> <artifactId>kingbase8</artifactId> <version>${kdb.version}</version> </dependency> 离线驱动下载 kingbase8-8.6.0.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.kingbase8.Driver url: jdbc:kingbase8://127.0.0.1:4321/pamirs?currentSchema=base&autosave=always&cleanupSavepoints=true username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.PGValidConnectionChecker PS:validConnectionCheckerClassName配置非常重要,连接存活检查是连接池可以保持连接的重要配置。Druid连接池可以自动识别大多数的数据库类型,由于jdbc:kingbase8协议属于非内置识别的类型,因此需要手动配置。 连接url配置 点击查看官方JDBC连接配置说明 url格式 jdbc:kingbase8://${host}:${port}/${database}?currentSchema=${schema}&autosave=always&cleanupSavepoints=true 在jdbc连接配置时,${database}和${schema}必须配置,不可缺省。autosave=always、cleanupSavepoints=true属于必须配置的事务参数,否则事务回滚行为与其他数据库不一致,会导致部分操作失败。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: KDB version: 9 major-version: V009R001C001B0030 pamirs: type: KDB version: 9 major-version: V009R001C001B0030 数据库版本 type version majorVersion V009R001C001B0030 KDB 9 V009R001C001B0030 V008R006C008B0020 KDB 9 V009R001C001B0030 PS:由于方言开发环境为V009R001C001B0030版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言与PostgreSQL数据库并无明显差异,Kingbase数据库可以直接使用PostgreSQL数据库方言。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint KDB数据库关键参数检查 PS:以下参数为Oinone平台接入KDB时使用的数据库参数,参数不一致时可尝试启动。 数据库模式 推荐配置:DB_MODE=oracle 数据库安装/初始化时配置 是否大小写敏感 推荐配置:enable_ci=off 是否启用语句级回滚 推荐配置:ora_statement_level_rollback = off show ora_statement_level_rollback; set ora_statement_level_rollback=off; 此参数在Oinone平台接入时使用的版本中未体现出应有的效果。从官方提供的文档来看,此参数与数据库连接串上的autosave=always&cleanupSavepoints=true配置结果应该是一致的,由于此参数配置无效,因此在数据库连接串上必须指定这两个参数。 Oinone平台在最初开发时使用的是基于mysql数据库的事务特性,即不支持语句级回滚的事务行为。因此,为了保证Oinone平台功能正常,需要使得事务行为保持一致。 如不一致,则可能出现某些功能无法正常使用的情况。如:流程设计器首次发布定时触发的工作流时会出现报错;导入/导出任务出现异常无法正常更新任务状态等。 是否将空字符串视为NULL 推荐配置:ora_input_emptystr_isnull = off show ora_input_emptystr_isnull; set ora_input_emptystr_isnull=off; KDB数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is…

    2024年10月29日
    1.4K00
  • 如何选择适合的模型类型?

    介绍 通过Oinone 7天从入门到精通的模型的类型章节我们可以知道模型有抽象模型、存储模型、代理模型、传输模型这四种。但是在在定义模型的时候我们可能不知道该如何选择类型,下面结合业务场景为大家讲解几种模型的典型使用场景。 抽象模型 抽象模型往往是提供公共能力和字段的模型,它本身不会直接用于构建协议和基础设施(如表结构等)。 场景:猫、鸟都继承自动物这个抽象模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.sys.Base; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Base @Model.model(AbstractAnimal.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.ABSTRACT) @Model(displayName = "动物") public abstract class AbstractAnimal extends IdModel { public static final String MODEL_MODEL = "demo.AbstractAnimal"; @Field.String @Field(displayName = "名称") private String name; @Field.String @Field(displayName = "颜色") private String color; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Cat.MODEL_MODEL) @Model(displayName = "猫") public class Cat extends AbstractAnimal { private static final long serialVersionUID = -5104390780952634397L; public static final String MODEL_MODEL = "demo.Cat"; @Field.Integer @Field(displayName = "尾巴长度") private Integer tailLength; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Bird.MODEL_MODEL) @Model(displayName = "鸟") public class Bird extends AbstractAnimal { private static final long serialVersionUID = -5144390780952634397L; public static final String MODEL_MODEL = "demo.Bird"; @Field.Integer @Field(displayName = "翼展宽度") private Integer wingSpanWidth; } 存储模型 存储模型用于定义数据表结构和数据的增删改查(数据管理器)功能,是直接与连接器进行交互的数据容器。 场景:存储模型对应传统开发模式中的数据表,上面例子中的Cat和Birdd都属于传输模型,由于模型定义的注解@Model.Advanced(type = ModelTypeEnum.STORE)默认值就是存储模型,所以一般不用手动指定 代理模型 代理模型是用于代理存储模型的数据管理器能力,同时又可以扩展出非存储数据信息的交互功能的模型。 场景一:隔离数据权限 场景二:增强列表的搜索项 场景三:导入导出的时候增加其他特殊信息 场景四:重写下拉组件的查询逻辑做数据过滤 传输模型 传输模型不会在数据库生成的表,只是作为数据的传输使用,跟传统开发模式中的DTO有一点相似。 场景一:批量处理数据 场景二:处理一些跟数据表无关的操作,如:清理指定业务的缓存、查看一些系统监控信息,可以根据业务信息建立对应的传输模型,在传输模型上创建action动作 场景三:通过传输模型完成复杂页面数据传输

    2024年4月7日
    1.4K00
  • 函数之触发与定时配置和示例

    异步任务总体介绍 函数的触发和定时在很多场景中会用到,也是一个oinone的基础能力。比如我们的流程产品中在定义流程触发时就会让用户选择模型触发还是时间触发,就是用到了函数的触发与定时能力。 触发任务TriggerTaskAction 触发任务的创建,使用sql-record模块监听mysql的binlog事件,通过rocketmq发送变更数据消息,收到MQ消息后,创建TriggerAutoTask。 触发任务的执行,使用TBSchedule拉取触发任务后,执行相应函数。 项目中引入依赖 1、项目的API工程引入依赖pamirs-core-trigger模块 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-api</artifactId> </dependency> 2、DemoModule在模块依赖定义中增加@Module(dependencies={TriggerModule.MODULE_MODULE}) @Component @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, UserModule.MODULE_MODULE, TriggerModule.MODULE_MODULE} ) @Module.module(DemoModule.MODULE_MODULE) @Module.Advanced(selfBuilt = true, application = true) @UxHomepage(PetShopProxy.MODEL_MODEL) public class DemoModule implements PamirsModule { ……其他代码 } 3、项目的boot工程引入依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> yml文件修改(applcation-xxx.yml) a. 修改pamris.event.enabled和pamris.event.schedule.enabled为trueb. pamirs_boot_modules增加启动模块:trigger、sql_record pamirs: record: sql: #改成自己路径 store: /opt/pamirs/logs … event: enabled: true schedule: enabled: true rocket-mq: namesrv-addr: 127.0.0.1:9876 boot: init: true sync: true modules: – base -…… – trigger – sql_record -…… 新建触发任务 新建PetTalentTrigger类,当PetTalent模型的数据记录被新建时触发系统做一些事情 package pro.shushi.pamirs.demo.core.trigger; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.trigger.annotation.Trigger; import pro.shushi.pamirs.trigger.enmu.TriggerConditionEnum; @Fun(PetTalent.MODEL_MODEL) @Slf4j public class PetTalentTrigger { @Function @Trigger(displayName = “PetTalent创建时触发”,name = “PetTalent#Trigger#onCreate”,condition = TriggerConditionEnum.ON_CREATE) public PetTalent onCreate(PetTalent data){ log.info(data.getName() + “,被创建”); //可以增加逻辑 return data; } } 定时任务 定时任务是一种非常常见的模式,这里就不介绍概念了,直接进入示例环节 新建PetTalentAutoTask实现ScheduleAction getInterfaceName()需要跟taskAction.setExecuteNamespace定义保持一致,都是函数的命名空间 taskAction.setExecuteFun("execute");跟执行函数名“execute”一致 TaskType需配置为CYCLE_SCHEDULE_NO_TRANSACTION_TASK,把定时任务的schedule线程分开,要不然有一个时间长的任务会导致普通异步或触发任务全部延时。 package pro.shushi.pamirs.demo.core.task; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.enmu.TimeUnitEnum; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.fun.FunctionDefinition; import pro.shushi.pamirs.middleware.schedule.api.ScheduleAction; import pro.shushi.pamirs.middleware.schedule.common.Result; import pro.shushi.pamirs.middleware.schedule.domain.ScheduleItem; import pro.shushi.pamirs.middleware.schedule.eunmeration.TaskType; import pro.shushi.pamirs.trigger.enmu.TriggerTimeAnchorEnum; import pro.shushi.pamirs.trigger.model.ScheduleTaskAction; import pro.shushi.pamirs.trigger.service.ScheduleTaskActionService; @Slf4j @Component @Fun(PetTalent.MODEL_MODEL) public class PetTalentAutoTask implements…

    2024年5月25日
    1.4K00

Leave a Reply

登录后才能评论