协同开发支持

协同开发概述

在使用Oinone进行业务开发中,目前开发方式为: 开发各个本地启动项目 与 设计器环境共库共redis的方式进行。

在多个开发人员同时修改一个模型,或者没有及时更新其他同学提交的代码时,存在业务模型创建的数据表字段被删除的情况,协同开发模式正式为解决这个问题而生。

版本支持

4.7.x版本 已经包含分布式支持。

使用步骤

1、业务后端boot工程引入协同开发包

<dependency>
    <groupId>pro.shushi.pamirs.distribution</groupId>
    <artifactId>pamirs-distribution-session-cd</artifactId>
</dependency>

2、yml文件配置ownSign

pamirs:
  distribution:
    session:
      allMetaRefresh: false
      ownSign: wangxian

配置说明:
allMetaRefresh,全量刷新Redis中的元数据,绝大多数情况下都不需要配置;
1)第一次启动或者Redis的缓存被清空后,会自动进行全量。
2)配置为true表示强制进行全量,一般都不需要配置;
3)【推荐】默认增量的方式(即allMetaRefresh: false)写入redis的数据更少,相应的启动速度也更快
4)【强制】ownSign是环境隔离的设置,同一个项目组不同的开发人员之间,ownSign配置成不同的(即各自配置成各自的,达到互不干扰)

3、业务系统DB和缓存的约束
1)【强制】业务库和设计器Redis共用,包括Redis的前缀,租户和系统隔离键都需要一样(这三个值影响RedisKey的拼接)
2)【强制】base库业务系统与设计器共用;
3) 【强制】公共库即pamirs (资源-resource、用户-user、权限-auth、文件-file等)共用;
4)【强制】「业务库」数据源的别名必须一直,每个开发人员必须配置到自己的本地 或者是远程库库加一个后缀区分;

4、开发同学在各自访问设计器时,URL最后面增加;ownSign=wangxian后回车,ownSign会被保存到浏览器缓存中,后续访问其他的URL访问不需要再次输入;如果需要去掉ownSign的值,则直接把界面上的悬浮窗删掉即可。
协同开发支持
说明:访问设计URL上增加的ownSign需要与开发各自本地项目yml文件中ownSign的值相同。(每个开发人员各自用各自的ownSign)
PS:具体参数配置详见Oinone协同开发使用手册

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4821.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2023年12月4日 pm8:49
下一篇 2023年12月5日 pm6:17

相关推荐

  • 【DM】后端部署使用Dameng数据库(达梦)

    达梦数据库配置 驱动配置 达梦数据库的服务端版本和驱动版本需要匹配,建议使用服务端安装时提供的jdbc驱动,不要使用官方maven仓库中的驱动。 报错 表 xx 中不能同时包含聚集 KEY 和大字段,建表的时候就指定非聚集主键。SELECT * FROM V$DM_INI WHERE PARA_NAME = ‘PK_WITH_CLUSTER’;SP_SET_PARA_VALUE(1,’PK_WITH_CLUSTER’,0) Maven配置 DM8(目前maven仓库最新版本) <dm.version>8.1.2.192</dm.version> <dependency> <groupId>com.dameng</groupId> <artifactId>DmJdbcDriver18</artifactId> <version>${dm.version}</version> </dependency> PS: 8.1.3.12版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 Maven配置 DM7 <dm7.version>7.6.1.120</dm7.version> <dependency> <groupId>com.dameng</groupId> <artifactId>Dm7JdbcDriver18</artifactId> <version>${dm7.version}</version> </dependency> PS: 7.6.1.120版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 离线驱动下载 Dm7JdbcDriver18-7.6.1.120.jarDmJdbcDriver18-8.1.3.12.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: dm.jdbc.driver.DmDriver # url: jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql url: jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.OracleValidConnectionChecker validationQuery: SELECT 1 FROM DUAL 连接url配置 点击查看官方文档:DM JDBC 编程指南 连接串1 jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:schema参数在低版本驱动区分大小写,高版本驱动不再区分大小写,为了避免错误,统一使用全大写。columnNameUpperCase参数与官方介绍不一致,为了避免错误,需要显式指定。 连接串2 jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:可能是未来更高版本中使用的连接串形式。 达梦数据库在不同驱动版本下需要使用不同的连接串进行处理,具体可参考下表:(使用错误的连接串将无法正常启动) Dm7JdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 7.6.0.165 2019.06.04 1 否 是 否 不支持LocalDateTime类型 7.6.1.120(建议) 2022.09.14 1 是 是 是 – DmJdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 8.1.2.192 2023.01.12 1 是 否 是 – 8.1.3.12(建议) 2023.04.17 2 是 否 是 – 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: DM version: 8 majorVersion: 8 pamirs: type: DM version: 8 majorVersion: 8 数据库版本 type version majorVersion 7-20220916 DM 7 20220916 8-20230418 DM 8 8 schedule方言配置 pamirs: event: schedule: dialect: type: DM version: 8 majorVersion: 8 type version majorVersion…

    2023年11月1日
    13.5K00
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.6K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 重写QueryPage时,增加额外的条件

    在需要对QueryPage增加额外的查询条件,比如DemoItem增加只展示创建人为当前用户的数据 @Function.Advanced(type = FunctionTypeEnum.QUERY, displayName = "查询列表") @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.LOCAL, FunctionOpenEnum.REMOTE, FunctionOpenEnum.API}) public Pagination<DemoItem> queryPage(Pagination<DemoItem> page, IWrapper<DemoItem> queryWrapper) { LambdaQueryWrapper<DemoItem> qw = ((QueryWrapper<DemoItem>) queryWrapper).lambda(); qw.eq(DemoItem::getCreateUid, PamirsSession.getUserId()); return demoItemService.queryPage(page, qw); }

    2023年11月1日
    86800
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.5K00

Leave a Reply

登录后才能评论