协同开发支持

协同开发概述

在使用Oinone进行业务开发中,目前开发方式为: 开发各个本地启动项目 与 设计器环境共库共redis的方式进行。

在多个开发人员同时修改一个模型,或者没有及时更新其他同学提交的代码时,存在业务模型创建的数据表字段被删除的情况,协同开发模式正式为解决这个问题而生。

版本支持

4.7.x版本 已经包含分布式支持。

使用步骤

1、业务后端boot工程引入协同开发包

<dependency>
    <groupId>pro.shushi.pamirs.distribution</groupId>
    <artifactId>pamirs-distribution-session-cd</artifactId>
</dependency>

2、yml文件配置ownSign

pamirs:
  distribution:
    session:
      allMetaRefresh: false
      ownSign: wangxian

配置说明:
allMetaRefresh,全量刷新Redis中的元数据,绝大多数情况下都不需要配置;
1)第一次启动或者Redis的缓存被清空后,会自动进行全量。
2)配置为true表示强制进行全量,一般都不需要配置;
3)【推荐】默认增量的方式(即allMetaRefresh: false)写入redis的数据更少,相应的启动速度也更快
4)【强制】ownSign是环境隔离的设置,同一个项目组不同的开发人员之间,ownSign配置成不同的(即各自配置成各自的,达到互不干扰)

3、业务系统DB和缓存的约束
1)【强制】业务库和设计器Redis共用,包括Redis的前缀,租户和系统隔离键都需要一样(这三个值影响RedisKey的拼接)
2)【强制】base库业务系统与设计器共用;
3) 【强制】公共库即pamirs (资源-resource、用户-user、权限-auth、文件-file等)共用;
4)【强制】「业务库」数据源的别名必须一直,每个开发人员必须配置到自己的本地 或者是远程库库加一个后缀区分;

4、开发同学在各自访问设计器时,URL最后面增加;ownSign=wangxian后回车,ownSign会被保存到浏览器缓存中,后续访问其他的URL访问不需要再次输入;如果需要去掉ownSign的值,则直接把界面上的悬浮窗删掉即可。
协同开发支持
说明:访问设计URL上增加的ownSign需要与开发各自本地项目yml文件中ownSign的值相同。(每个开发人员各自用各自的ownSign)
PS:具体参数配置详见Oinone协同开发使用手册

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4821.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2023年12月4日 pm8:49
下一篇 2023年12月5日 pm6:17

相关推荐

  • 工作流审核撤回/回退/拒绝/同意/反悔钩子使用

    目录 1. 流程撤回、拒绝和回退调用自定义函数1.1 工作流【撤销】回调钩子1.2 撤销【回退】回调钩子1.3 工作流【拒绝】回调钩子1.4 工作流【同意】回调钩子1.4 工作流【反悔】回调钩子1.4 回调钩子在业务系统中的调用示例2. 自定义审批方式、自定义审批节点名称 1.流程撤回、拒绝和回退调用自定义函数 1.1工作流【撤销】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:当流程实例被撤销时调用入口:pro.shushi.pamirs.workflow.app.core.service.impl.WorkflowInstanceServiceImpl#undoInstance /** * XXX为当前流程触发方式为模型触发时对应的触发模型、 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX recall(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.2撤销【回退】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行回退操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX fallBack(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.3工作流【拒绝】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行拒绝操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX reject(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.4 工作流【同意】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行同意操作时调用入口:pro.shushi.pamirs.workflow.app.core.util.ArtificialTaskUtils @Function(summary = "发起的审批同意时会自动调用此方法") @Function.Advanced(displayName = "审批同意") public Teacher agree(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 // WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new Teacher(); } 1.4 工作流【反悔】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行反悔操作时使用场景:流程待办进行反悔操作时,需要额外更改其他的业务数据逻辑时可用该回调钩子。 注意:该函数的namespace需要设置为流程触发模型。 调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ArtificialRetractOperatorService @Function @Function.fun(WorkflowBizCallConstants.retract) public void retract(WorkflowUserTask workflowUserTask) { // 获取流程实例 workflowUserTask.fieldQuery(WorkflowUserTask::getInstance); WorkflowInstance instance = workflowUserTask.getInstance(); // 获取用户任务实例 WorkflowUserInstance userInstance = new WorkflowUserInstance() .setId(workflowUserTask.getWorkflowUserInstanceId()) .queryById(); // 反悔的用户id…

    2023年11月15日
    1.3K00
  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    2.1K00
  • 项目中排除掉特定的Hook和扩展点

    总体介绍 在共库共Redis的情况下,某些场景存在需要过滤掉特定Hook和扩展点(extpoint)的情况。本文介绍排除掉的配置方法 1. Oinone如何排除特定的Hook 配置: pamirs: framework: hook: excludes: – 排除的扩展点列表 示例: pamirs: framework: hook: excludes: – pro.shushi.pamirs.timezone.hook.TimezoneHookBefore – pro.shushi.pamirs.timezone.hook.TimezoneHookAfter – pro.shushi.pamirs.timezone.hook.TimezoneSessionInitHook – pro.shushi.pamirs.translate.hook.TranslateAfterHook 2. Oinone如何排除特定的扩展点 配置 pamirs: framework: extpoint: excludes: – 排除的扩展点列表 示例: pamirs: framework: extpoint: excludes: – pro.shushi.pamirs.demo.core.extpoint.PetCatTypeExtPoint

    2024年5月13日
    1.1K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 【OpenGauss】后端部署使用OpenGauss高斯数据库

    Gauss数据库配置 适配版本 4.7.8.3之后的版本 配置步骤 Maven配置 去华为官网下周驱动包:gsjdbc4.jar;https://support.huaweicloud.com/mgtg-dws/dws_01_0032.html <dependency> <groupId>org.postgresql</groupId> <artifactId>gsjdbc</artifactId> <version>4</version> <scope>system</scope> <!– 下面两种方式都可以–> <systemPath>${pom.basedir}/libs/gsjdbc4.jar</systemPath> <!–<systemPath>/Users/wangxian/java-tools/guassdb/gsjdbc4.jar</systemPath>–> </dependency> 导入 scope 为 system 的包,spring 编译插件需要增加 includeSystemScope: true 配置。 <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <includeSystemScope>true</includeSystemScope> </configuration> <executions> <execution> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> JDBC连接配置 pamirs: datasource: pamirs: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo_base username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 点击查看官方文档:官方文档 url格式 jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema} 在pamirs连接配置时,${database}和${schema}必须完整配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: GaussDB version: 5 majorVersion: 5.0.1 pamirs: type: GaussDB version: 5 majorVersion: 5.0.1 数据库版本 type version majorVersion 5.x GaussDB 5 5.0.1 PS:由于方言开发环境为5.0.1版本,其他类似版本(5.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: GaussDB version: 5 major-version: 5.0.1 type version majorVersion GaussDB 5 5.0.1 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Gauss数据库用户初始化及授权 — init root…

    2024年3月27日
    2.2K00

Leave a Reply

登录后才能评论