自定义createorupdate方法时,关联模型数据怎么保存?

需要自己手动增加保存关联模型数据的逻辑。

  • 多对一、一对一以及一对多

可直接用fieldSave进行保存即可

//如 data.fieldSave(PamirsEmployee::getPositions);
  • 多对多

需要对数据进行处理,前端提交过来的数据,进行判断,是新增还是修改,或者删除

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/6.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
oinone的头像oinone
上一篇 2023年6月20日 pm4:07
下一篇 2023年11月2日 pm1:58

相关推荐

  • 如何通过自定义支持excel导出的动态表头

    介绍 本文需要阅读过前置文档如何自定义Excel导出功能,动态表头的功能在前置文档的基础上做的进一步扩展,本文未提到的部分都参考这个前置文档。 在日常的业务开发中,我们在导出的场景会遇到需要设置动态表头的场景,比如统计商品在最近1个月的销量,固定表头列为商品的名称等基础信息,动态表头列为最近一个月的日期,在导出的时候设置每个日期的销量,本文将通过此业务场景提供示例代码。 1.自定义导出任务模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemDynamicExcelExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel动态表头导出任务") public class DemoItemDynamicExcelExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemDynamicExcelExportTask"; } 2.自定义导出任务处理数据的扩展点 package pro.shushi.pamirs.demo.core.excel.exportdemo.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.FetchUtil; import pro.shushi.pamirs.core.common.cache.MemoryIterableSearchCache; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.file.api.config.FileConstant; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.entity.EasyExcelCellDefinition; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelFixedHeadHelper; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.framework.common.entry.TreeNode; import pro.shushi.pamirs.meta.annotation.ExtPoint; import pro.shushi.pamirs.meta.api.CommonApiFactory; import pro.shushi.pamirs.meta.api.core.orm.ReadApi; import pro.shushi.pamirs.meta.api.core.orm.systems.relation.RelationReadApi; import pro.shushi.pamirs.meta.api.dto.config.ModelConfig; import pro.shushi.pamirs.meta.api.dto.config.ModelFieldConfig; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.enmu.TtypeEnum; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.*; @Component public class DemoItemDynamicExportExtPoint extends ExcelExportSameQueryPageTemplate<DemoItem> implements ExcelTemplateInit { public static final String TEMPLATE_NAME ="商品动态导出"; @Override public List<ExcelWorkbookDefinition> generator() { ExcelFixedHeadHelper excelFixedHeadHelper = ExcelHelper.fixedHeader(DemoItem.MODEL_MODEL,TEMPLATE_NAME) .createBlock(TEMPLATE_NAME, DemoItem.MODEL_MODEL) .setType(ExcelTemplateTypeEnum.EXPORT); return Collections.singletonList(excelFixedHeadHelper.build()); } public static void buildHeader(ExcelFixedHeadHelper excelFixedHeadHelper) { excelFixedHeadHelper.addColumn("name","名称") .addColumn("cateName","类目") .addColumn("searchFrom","搜索来源") .addColumn("description","描述") .addColumn("itemPrice","单价") .addColumn("inventoryQuantity","库存"); } @Override @ExtPoint.Implement(expression = "context.model == \"" + DemoItem.MODEL_MODEL+"\" && context.name == \"" +TEMPLATE_NAME+"\"" ) public List<Object> fetchExportData(ExcelExportTask exportTask, ExcelDefinitionContext context) { List<Object> result = super.fetchExportData(exportTask,context); Object block = result.get(0); if (block instanceof ArrayList) { ((List<Object>) block).forEach(o -> { if (o instanceof DemoItem) { DemoItem item = (DemoItem) o; // TODO 设置动态表头部分字段的值 item.get_d().put("2024-09-10", "1111"); item.get_d().put("2024-09-11", "2222"); }…

    2024年9月11日
    3.3K00
  • 函数之触发与定时配置和示例

    异步任务总体介绍 函数的触发和定时在很多场景中会用到,也是一个oinone的基础能力。比如我们的流程产品中在定义流程触发时就会让用户选择模型触发还是时间触发,就是用到了函数的触发与定时能力。 触发任务TriggerTaskAction 触发任务的创建,使用sql-record模块监听mysql的binlog事件,通过rocketmq发送变更数据消息,收到MQ消息后,创建TriggerAutoTask。 触发任务的执行,使用TBSchedule拉取触发任务后,执行相应函数。 项目中引入依赖 1、项目的API工程引入依赖pamirs-core-trigger模块 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-api</artifactId> </dependency> 2、DemoModule在模块依赖定义中增加@Module(dependencies={TriggerModule.MODULE_MODULE}) @Component @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, UserModule.MODULE_MODULE, TriggerModule.MODULE_MODULE} ) @Module.module(DemoModule.MODULE_MODULE) @Module.Advanced(selfBuilt = true, application = true) @UxHomepage(PetShopProxy.MODEL_MODEL) public class DemoModule implements PamirsModule { ……其他代码 } 3、项目的boot工程引入依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> yml文件修改(applcation-xxx.yml) a. 修改pamris.event.enabled和pamris.event.schedule.enabled为trueb. pamirs_boot_modules增加启动模块:trigger、sql_record pamirs: record: sql: #改成自己路径 store: /opt/pamirs/logs … event: enabled: true schedule: enabled: true rocket-mq: namesrv-addr: 127.0.0.1:9876 boot: init: true sync: true modules: – base -…… – trigger – sql_record -…… 新建触发任务 新建PetTalentTrigger类,当PetTalent模型的数据记录被新建时触发系统做一些事情 package pro.shushi.pamirs.demo.core.trigger; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.trigger.annotation.Trigger; import pro.shushi.pamirs.trigger.enmu.TriggerConditionEnum; @Fun(PetTalent.MODEL_MODEL) @Slf4j public class PetTalentTrigger { @Function @Trigger(displayName = “PetTalent创建时触发”,name = “PetTalent#Trigger#onCreate”,condition = TriggerConditionEnum.ON_CREATE) public PetTalent onCreate(PetTalent data){ log.info(data.getName() + “,被创建”); //可以增加逻辑 return data; } } 定时任务 定时任务是一种非常常见的模式,这里就不介绍概念了,直接进入示例环节 新建PetTalentAutoTask实现ScheduleAction getInterfaceName()需要跟taskAction.setExecuteNamespace定义保持一致,都是函数的命名空间 taskAction.setExecuteFun("execute");跟执行函数名“execute”一致 TaskType需配置为CYCLE_SCHEDULE_NO_TRANSACTION_TASK,把定时任务的schedule线程分开,要不然有一个时间长的任务会导致普通异步或触发任务全部延时。 package pro.shushi.pamirs.demo.core.task; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.enmu.TimeUnitEnum; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.fun.FunctionDefinition; import pro.shushi.pamirs.middleware.schedule.api.ScheduleAction; import pro.shushi.pamirs.middleware.schedule.common.Result; import pro.shushi.pamirs.middleware.schedule.domain.ScheduleItem; import pro.shushi.pamirs.middleware.schedule.eunmeration.TaskType; import pro.shushi.pamirs.trigger.enmu.TriggerTimeAnchorEnum; import pro.shushi.pamirs.trigger.model.ScheduleTaskAction; import pro.shushi.pamirs.trigger.service.ScheduleTaskActionService; @Slf4j @Component @Fun(PetTalent.MODEL_MODEL) public class PetTalentAutoTask implements…

    2024年5月25日
    1.4K00
  • 后端代码规范

    前言 虽然oinone框架减少了很多的代码,但是低代码部分的代码质量也需要高度关注,不管是写的代码bug多,或者说被吐槽代码不行,还是说写的代码经常被重构,核心点还是没有代码规范的意识和技巧,下面摘录了一些常见的规范要求,去提高后端的代码质量,代码质量提高后,自然效率也会提升。 常见代码规范 **1、规范命名** 命名是写代码中最频繁的操作,比如类、属性、方法、参数等。好的名字应当能遵循以下几点: **见名知意** 比如需要定义一个变量需要来计数 int i = 0; 名称 i 没有任何的实际意义,没有体现出数量的意思,所以我们应当指明数量的名称 int count = 0; **能够读的出来** 如下代码: private String sfzh; private String dhhm; 这些变量的名称,根本读不出来,更别说实际意义了。 所以我们可以使用正确的可以读出来的英文来命名 private String idCardNo; private String phone; **2、规范代码格式** 好的代码格式能够让人感觉看起来代码更加舒适。 好的代码格式应当遵守以下几点: 合适的空格 代码对齐,比如大括号要对齐 及时换行,一行不要写太多代码 好在现在开发工具支持一键格式化,可以帮助美化代码格式,大家统一使用idea的规范即可。 **3、写好代码注释** 在《代码整洁之道》这本书中作者提到了一个观点,注释的恰当用法是用来弥补我们在用代码表达意图时的失败。换句话说,当无法通过读代码来了解代码所表达的意思的时候,就需要用注释来说明。 书的作者之所以这么说,是因为作者觉得随着时间的推移,代码可能会变动,如果不及时更新注释,那么注释就容易产生误导,偏离代码的实际意义。而不及时更新注释的原因是,程序员不喜欢写注释。😒 但是这不意味着可以不写注释,当通过代码如果无法表达意思的时候,就需要注释,比如如下代码: for (Integer id : ids) { if (id == 0) { continue; } //做其他事 } 为什么 id == 0 需要跳过,代码是无法看出来了,就需要注释了。 好的注释应当满足一下几点: 解释代码的意图,说明为什么这么写,用来做什么 对参数和返回值注释,入参代表什么,出参代表什么 有警示作用,比如说入参不能为空,或者代码是不是有坑 当代码还未完成时可以使用 todo 注释来标记 代码review发现漏洞时 可以使用 fixme 注释来标记 **4、try catch 内部代码抽成一个方法** try catch代码有时会干扰我们阅读核心的代码逻辑,这时就可以把try catch内部主逻辑抽离成一个单独的方法 如下图是Eureka服务端源码中服务下线的实现中的一段代码 整个方法非常长,try中代码是真正的服务下线的代码实现,finally可以保证读锁最终一定可以释放。 所以这段代码其实就可以对核心的逻辑进行抽取。 protected boolean internalCancel(String appName, String id, boolean isReplication) { try { read.lock(); doInternalCancel(appName, id, isReplication); } finally { read.unlock(); } // 剩余代码 } private boolean doInternalCancel(String appName, String id, boolean isReplication) { //真正处理下线的逻辑 } **5、方法别太长** 方法别太长就是字面的意思。一旦代码太长,给人的第一眼感觉就很复杂,让人不想读下去; 同时方法太长的代码可能读起来容易让人摸不着头脑,不知道哪一些代码是同一个业务的功能。 比如代码中有那种2000+行大类,各种if else判断,光理清代码思路就需要用很久时间。🤷🏻‍♀️ 所以一旦方法过长,可以尝试将相同业务功能的代码单独抽取一个方法,最后在主方法中调用即可。 **6、抽取重复代码** 当一份代码重复出现在程序的多处地方,就会造成程序又臭又长,当这份代码的结构要修改时,每一处出现这份代码的地方都得修改,导致程序的扩展性很差。 所以一般遇到这种情况,可以抽取成一个工具类,还可以抽成一个公共的父类。 **7、多用return** 在有时我们平时写代码的情况可能会出现if条件套if的情况,当if条件过多的时候可能会出现如下情况: if (条件1) { if (条件2) { if (条件3) { if (条件4) { if (条件5) { System.out.println("11111"); } } } } } 面对这种情况,可以换种思路,使用return来优化 if (!条件1) { return; } if (!条件2) { return; } if (!条件3) { return; } if (!条件4) { return; } if (!条件5) { return; } System.out.println("11111"); 这样优化就感觉看起来更加直观 **8、if条件表达式不要太复杂**…

    2024年12月11日
    2.6K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 【MSSQL】后端部署使用MSSQL数据库(SQLServer)

    MSSQL数据库配置 驱动配置 Maven配置(2017版本可用) <mssql.version>9.4.0.jre8</mssql.version> <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>mssql-jdbc</artifactId> <version>${mssql.version}</version> </dependency> 离线驱动下载 mssql-jdbc-7.4.1.jre8.jarmssql-jdbc-9.4.0.jre8.jarmssql-jdbc-12.2.0.jre8.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.microsoft.sqlserver.jdbc.SQLServerDriver url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=base username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 暂无官方资料 url格式 jdbc:sqlserver://${host}:${port};DatabaseName=${database} 在jdbc连接配置时,${database}必须配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: MSSQL version: 2017 major-version: 2017 pamirs: type: MSSQL version: 2017 major-version: 2017 数据库版本 type version majorVersion 2017 MSSQL 2017 2017 PS:由于方言开发环境为2017版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: MSSQL version: 2017 major-version: 2017 type version majorVersion MSSQL 2017 2017 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: CAST(DATEDIFF(S, CAST('1970-01-01 00:00:00' AS DATETIME), GETUTCDATE()) AS BIGINT) * 1000000 + DATEPART(NS, SYSUTCDATETIME()) / 100 MSSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE LOGIN [root] WITH PASSWORD = 'password'; — if using mssql database, this authorization is required. ALTER SERVER ROLE [sysadmin] ADD MEMBER [root];

    2024年10月18日
    1.0K00

Leave a Reply

登录后才能评论