Oinone请求调用链路

Oinone请求调用链路

请求格式与简单流程

在Oinone中请求数据存储在请求体中,以GQL的方式进行表示,也就是GQL格式的请求。

当我们发送一个GQL格式的请求,后端会对GQL进行解析,确定想要执行的方法,并对这个方法执行过程中所用到的模型进行构建,最后返回响应。

  • 请求
# 请求路径 pamirs/base
http://127.0.0.1:8090/pamirs/base

# 请求体内容
query{  
  petShopProxyBQuery{  
    sayHello(shop:{shopName:"cpc"}){
        shopName
    }
  }   
} 
  • 解析
# 简单理解
query 操作类型
petShopProxyBQuery 模块名称 + Query
sayHello 方法 fun
sayHello() 可以传入参数,参数名为 shop
shopName 需要得到的值
  • 响应
# data中的内容
"data": {
    "petShopQuery": {
        "hello": {
                "shopName": "cpc"
        }
    }
}

具体流程

Oinone是基于SpringBoot的,在Controller中处理请求

会接收所有以 /pamirs 开始的POST请求,/pamirs/后携带的是模块名

@RequestMapping(
        value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}",
        method = RequestMethod.POST
)
public String pamirsPost(@PathVariable("moduleName") String moduleName,
                         @RequestBody PamirsClientRequestParam gql,
                         HttpServletRequest request,
                         HttpServletResponse response) {
        ........
}

整体脉络

Oinone请求调用链路
第四步执行中有两大重要的步骤,一步是动态构建GQL,一步是执行请求。

动态构建GQL

Oinone请求调用链路

请求执行

Oinone请求调用链路

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/19664.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(1)
oinone的头像oinone
上一篇 2024年11月27日 pm11:31
下一篇 2024年12月2日 pm7:50

相关推荐

  • 如何自定义Excel导出功能

    介绍 在平台提供的默认导出功能无法满足业务需求的时候,我们可以自定义导出功能,以满足业务中个性化的需求。 功能示例 继承平台的导出任务模型,加上需要在导出的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导出任务") public class DemoItemExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemExportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导出弹窗视图的数据初始化方法和导出提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.file.api.action.ExcelExportTaskAction; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemExportTask.MODEL_MODEL) public class DemoItemExcelExportTaskAction extends ExcelExportTaskAction { public DemoItemExcelExportTaskAction(ExcelFileService excelFileService) { super(excelFileService); } @Action(displayName = "导出", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemExportTask createExportTask(DemoItemExportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } super.createExportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemExportTask construct(DemoItemExportTask data) { data.construct(); return data; } } 编写导出的数据处理逻辑,此处可以拿到导出弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.extpoint.ExcelExportFetchDataExtPoint; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.meta.annotation.ExtPoint; import java.util.Collections; import java.util.List; @Component public class DemoItemExportExtPoint extends ExcelExportSameQueryPageTemplate implements ExcelTemplateInit , ExcelExportFetchDataExtPoint…

    2024年1月3日
    1.1K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.1K00
  • 项目中工作流引入和流程触发

    目录 1. 使用工作流需要依赖的包和设置2. 触发方式2.1 自动触发方式2.2 触发方式 1.使用工作流需要依赖的包和设置 1.1 工作流需要依赖的模块 需在pom.xml中增加workflow、sql-record和trigger相关模块的依赖 workflow:工作流运行核心模块 sql-record:监听流程发布以后对应模型的增删改监听 trigger:异步任务调度模块 <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-api</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> 在application.yml中增加对应模块的依赖以及sql-record路径以及其他相关设置 pamirs: … record: sql: #改成自己路径 store: /opt/pamirs/logs … boot: init: true sync: true modules: … – sql_record – trigger – workflow … sharding: define: data-sources: ds: pamirs models: "[trigger.PamirsSchedule]": tables: 0..13 event: enabled: true schedule: enabled: true # ownSign区分不同应用 ownSign: demo rocket-mq: # enabled 为 false情况不用配置 namesrv-addr: 192.168.6.2:19876 trigger: auto-trigger: true 2.触发方式 2.1自动触发方式 在流程设计器中设置触发方式,如果设置了代码触发方式则不会自动触发 2.2代码调用方式触发 2.2.1.再流程设计器中触发设置中,设置为是否人工触发设置为是 2.2.2.查询数据库获取该流程的编码 2.2.3.在代码中调用 /** * 触发⼯作流实例 */ private Boolean startWorkflow(WorkflowD workflowD, IdModel modelData) { WorkflowDefinition workflowDefinition = new WorkflowDefinition().queryOneByWrapper( Pops.<WorkflowDefinition>lambdaQuery() .from(WorkflowDefinition.MODEL_MODEL) .eq(WorkflowDefinition::getWorkflowCode, workflowD.getCode()) .eq(WorkflowDefinition::getActive, 1) ); if (null == workflowDefinition) { // 流程没有运⾏实例 return Boolean.FALSE; } String model = Models.api().getModel(modelData); //⼯作流上下⽂ WorkflowDataContext wdc = new WorkflowDataContext(); wdc.setDataType(WorkflowVariationTypeEnum.ADD); wdc.setModel(model); wdc.setWorkflowDefinitionDefinition(workflowDefinition.parseContent()); wdc.setWorkflowDefinition(workflowDefinition); wdc.setWorkflowDefinitionId(workflowDefinition.getId()); IdModel copyData = KryoUtils.get().copy(modelData); // ⼿动触发创建的动作流,将操作⼈设置为当前⽤户,作为流程的发起⼈ copyData.setCreateUid(PamirsSession.getUserId()); copyData.setWriteUid(PamirsSession.getUserId()); String jsonData = JsonUtils.toJSONString(copyData.get_d()); //触发⼯作流 新增时触发-onCreateManual 更新时触发-onUpdateManual Fun.run(WorkflowModelTriggerFunction.FUN_NAMESPACE, "onCreateManual", wdc, msgId, jsonData); return Boolean.TRUE; }

    2023年11月7日
    1.2K00
  • 引入搜索(增强模型Channel)常见问题解决办法

    总体描述 引入Oinone的搜索(即Channel模块)后,因错误的配置、缺少配置或者少引入一些Jar包,会出现一些报错。 问题1:启动报类JCTree找不到 具体现象 启动过程可能会出现报错:java.lang.NoClassDefFoundError: com/sun/tools/javac/tree/JCTree$JCExpression 产生原因 引入Channel模块后,启动过程中会扫描Class包找寻Enhance的注解,Pamirs底层有使用到jdk的tools中的类, com/sun/tools/javac/tree/JCTree$JCExpression 特定版本的jdk可能会缺少tools.jar导致启动失败 具体报错 at org.springframework.boot.loader.Launcher.launch(Launcher.java:107) [pamirs-venus-boot.jar:na] at org.springframework.boot.loader.Launcher.launch(Launcher.java:58) [pamirs-venus-boot.jar:na] at org.springframework.boot.loader.JarLauncher.main(JarLauncher.java:88) [pamirs-venus-boot.jar:na] Caused by: java.util.concurrent.ExecutionException: java.lang.NoClassDefFoundError: com/sun/tools/javac/tree/JCTree$JCExpression at java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:357) ~[na:1.8.0_381] at java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1908) ~[na:1.8.0_381] at pro.shushi.pamirs.boot.common.initial.PamirsBootMainInitial.init(PamirsBootMainInitial.java:66) ~[pamirs-boot-api-4.6.10.jar!/:na] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:1.8.0_381] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) ~[na:1.8.0_381] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:1.8.0_381] at java.lang.reflect.Method.invoke(Method.java:498) ~[na:1.8.0_381] at org.springframework.context.event.ApplicationListenerMethodAdapter.doInvoke(ApplicationListenerMethodAdapter.java:305) ~[spring-context-5.2.12.RELEASE.jar!/:5.2.12.RELEASE] … 20 common frames omitted Caused by: java.lang.NoClassDefFoundError: com/sun/tools/javac/tree/JCTree$JCExpression at java.lang.Class.forName0(Native Method) ~[na:1.8.0_381] at java.lang.Class.forName(Class.java:264) ~[na:1.8.0_381] at pro.shushi.pamirs.meta.util.ClassUtils.getClasses(ClassUtils.java:157) ~[pamirs-meta-model-4.6.8.jar!/:na] at pro.shushi.pamirs.meta.util.ClassUtils.getClassesByPacks(ClassUtils.java:73) ~[pamirs-meta-model-4.6.8.jar!/:na] at pro.shushi.pamirs.channel.core.manager.EnhanceModelScanner.enhanceModel(EnhanceModelScanner.java:51) ~[pamirs-channel-core-4.6.15.jar!/:na] at pro.shushi.pamirs.channel.core.init.ChannelSystemBootAfterInit.init(ChannelSystemBootAfterInit.java:31) 解决办法 方式一【推荐】、配置channel的扫描路径 pamirs: channel: packages: – com.pamirs.ic 方式二、使用Oracle版本的jdk,确保jdk的lib目录,tools.jar有com/sun/tools/javac/tree/JCTree对应的类 问题2:启动报类JsonProvider找不到 具体报错 如果启动报错信息如下: Caused by: java.lang.NoClassDefFoundError: jakarta/json/spi/JsonProvider at java.lang.ClassLoader.defineClass1(Native Method) ~[na:1.8.0_181] at java.lang.ClassLoader.defineClass(ClassLoader.java:763) ~[na:1.8.0_181] at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142) ~[na:1.8.0_181] at java.net.URLClassLoader.defineClass(URLClassLoader.java:467) ~[na:1.8.0_181] 产生原因 项目中只引入了pamirs-channel-core,但未引入elasticsearch相关的包 解决办法 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> 其他参考: Oinone引入搜索引擎步骤:https://doc.oinone.top/backend/7235.html

    2024年5月17日
    1.1K00
  • Oinone引入搜索引擎(增强模型)

    场景描述 在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch; 使用前你应该 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/ 有一个可用的ElasticSearch环境(本地项目能引用到) 前置约束 增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。 项目引入搜索步骤 1、boot工程加入相关依赖包 boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本 boot工程加入pamris-channel的工程依赖 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-core</artifactId> </dependency> 2、api工程加入相关依赖包 在XXX-api中增加入pamirs-channel-api的依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-api</artifactId> </dependency> 3、yml文件配置 在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致 pamirs: record: sql: #改成自己本地路径(或服务器路径) store: /Users/oinone/record boot: modules: – channel ## 确保也安装了sql_record – sql_record channel: packages: # 增强模型扫描包配置 – com.xxx.xxx elastic: url: 127.0.0.1:9200 4、项目的模块增加模块依赖 XXXModule增加对ChannelModule的依赖 @Module(dependencies = {ChannelModule.MODULE_MODULE}) 5、增加增强模型(举例) package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; } 6、重启系统看效果 1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据 2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作 个性化dump逻辑 通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。 重写ShardingModelEnhance模型的synchronize方法 重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】 package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.List; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; @Field(displayName = "nick") private String nick;…

    2024年5月14日
    1.7K00

Leave a Reply

登录后才能评论