流程设计流程结束通知SPI接口

1.实现SPI接口

import pro.shushi.pamirs.meta.common.spi.SPI;
import pro.shushi.pamirs.meta.common.spi.factory.SpringServiceLoaderFactory;
import pro.shushi.pamirs.workflow.app.api.entity.WorkflowContext;
import pro.shushi.pamirs.workflow.app.api.model.WorkflowInstance;

@SPI(factory = SpringServiceLoaderFactory.class)
public interface WorkflowEndNoticeApi {
    void execute(WorkflowContext context, WorkflowInstance instance);
}

自定义通知逻辑

/**
 * 自定义扩展流程结束时扩展点
 */
@Order(999)
@Component
@SPI.Service
public class MyWorkflowEndNoticeApi implements WorkflowEndNoticeApi {

    @Override
    public void execute(WorkflowContext context, WorkflowInstance instance) {
        Long dataBizId = instance.getDataBizId(); 
        //todo自定义逻辑
    }
}

Oinone社区 作者:数式-海波原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4979.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
数式-海波的头像数式-海波数式管理员
上一篇 2023年12月18日 pm2:24
下一篇 2024年1月3日 pm8:36

相关推荐

  • 如何选择适合的模型类型?

    介绍 通过Oinone 7天从入门到精通的模型的类型章节我们可以知道模型有抽象模型、存储模型、代理模型、传输模型这四种。但是在在定义模型的时候我们可能不知道该如何选择类型,下面结合业务场景为大家讲解几种模型的典型使用场景。 抽象模型 抽象模型往往是提供公共能力和字段的模型,它本身不会直接用于构建协议和基础设施(如表结构等)。 场景:猫、鸟都继承自动物这个抽象模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.sys.Base; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Base @Model.model(AbstractAnimal.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.ABSTRACT) @Model(displayName = "动物") public abstract class AbstractAnimal extends IdModel { public static final String MODEL_MODEL = "demo.AbstractAnimal"; @Field.String @Field(displayName = "名称") private String name; @Field.String @Field(displayName = "颜色") private String color; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Cat.MODEL_MODEL) @Model(displayName = "猫") public class Cat extends AbstractAnimal { private static final long serialVersionUID = -5104390780952634397L; public static final String MODEL_MODEL = "demo.Cat"; @Field.Integer @Field(displayName = "尾巴长度") private Integer tailLength; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Bird.MODEL_MODEL) @Model(displayName = "鸟") public class Bird extends AbstractAnimal { private static final long serialVersionUID = -5144390780952634397L; public static final String MODEL_MODEL = "demo.Bird"; @Field.Integer @Field(displayName = "翼展宽度") private Integer wingSpanWidth; } 存储模型 存储模型用于定义数据表结构和数据的增删改查(数据管理器)功能,是直接与连接器进行交互的数据容器。 场景:存储模型对应传统开发模式中的数据表,上面例子中的Cat和Birdd都属于传输模型,由于模型定义的注解@Model.Advanced(type = ModelTypeEnum.STORE)默认值就是存储模型,所以一般不用手动指定 代理模型 代理模型是用于代理存储模型的数据管理器能力,同时又可以扩展出非存储数据信息的交互功能的模型。 场景一:隔离数据权限 场景二:增强列表的搜索项 场景三:导入导出的时候增加其他特殊信息 场景四:重写下拉组件的查询逻辑做数据过滤 传输模型 传输模型不会在数据库生成的表,只是作为数据的传输使用,跟传统开发模式中的DTO有一点相似。 场景一:批量处理数据 场景二:处理一些跟数据表无关的操作,如:清理指定业务的缓存、查看一些系统监控信息,可以根据业务信息建立对应的传输模型,在传输模型上创建action动作 场景三:通过传输模型完成复杂页面数据传输

    2024年4月7日
    1.3K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    85100
  • 导入设计数据时dubbo超时导入失败

    问题描述 在本地启动导入设计数据的工程时,会出现dubbo调用超时导致设计数据无法完整导入的问题。 org.apache.dubbo.remoting.TimeoutException 产生原因 pom中的包依赖出现问题,导致没有使用正确的远程服务。 本地可能出现的异常报错堆栈信息如下: xception in thread "fixed-1-thread-10" PamirsException level: ERROR, code: 10100025, type: SYSTEM_ERROR, msg: 函数执行错误, extra:, extend: null at pro.shushi.pamirs.meta.common.exception.PamirsException$Builder.errThrow(PamirsException.java:190) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:118) at sun.reflect.GeneratedMethodAccessor498.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethodWithGivenArgs(AbstractAspectJAdvice.java:644) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethod(AbstractAspectJAdvice.java:633) at org.springframework.aop.aspectj.AspectJAroundAdvice.invoke(AspectJAroundAdvice.java:70) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:175) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:95) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:691) at pro.shushi.pamirs.framework.orm.DefaultWriteApi$$EnhancerBySpringCGLIB$$b4cea2b4.createOrUpdateBatchWithResult(<generated>) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatchWithResult(OriginDataManager.java:161) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatch(OriginDataManager.java:152) at pro.shushi.pamirs.ui.designer.service.installer.UiDesignerInstaller.lambda$install$0(UiDesignerInstaller.java:42) at pro.shushi.pamirs.core.common.function.AroundRunnable.run(AroundRunnable.java:26) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.dubbo.rpc.RpcException: Failed to invoke the method createOrUpdateBatchWithResult in the service org.apache.dubbo.rpc.service.GenericService. Tried 1 times of the providers [192.168.0.123:20880] (1/1) from the registry 127.0.0.1:2181 on the consumer 192.168.0.123 using the dubbo version 2.7.22. Last error is: Invoke remote method timeout. method: $invoke, provider: dubbo://192.168.0.123:20880/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi?anyhost=true&application=pamirs-demo&application.version=1.0.0&check=false&deprecated=false&dubbo=2.0.2&dynamic=true&generic=true&group=pamirs&interface=ui.designer.UiDesignerViewLayout.oio.defaultWriteApi&metadata-type=remote&methods=*&payload=104857600&pid=69748&qos.enable=false&register.ip=192.168.0.123&release=2.7.15&remote.application=pamirs-test&retries=0&serialization=pamirs&service.name=ServiceBean:pamirs/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi:1.0.0&side=consumer&sticky=false&timeout=5000&timestamp=1701136088893&version=1.0.0, cause: org.apache.dubbo.remoting.TimeoutException: Waiting server-side response timeout by scan timer. start time: 2023-11-28 10:23:05.835, end time: 2023-11-28 10:23:10.856, client elapsed: 695 ms, server elapsed: 4326 ms, timeout: 5000 ms, request: Request [id=0, version=2.0.2, twoway=true, event=false, broken=false, data=null], channel: /192.168.0.123:49449 -> /192.168.0.123:20880 at org.apache.dubbo.rpc.cluster.support.FailoverClusterInvoker.doInvoke(FailoverClusterInvoker.java:110) at org.apache.dubbo.rpc.cluster.support.AbstractClusterInvoker.invoke(AbstractClusterInvoker.java:265) at org.apache.dubbo.rpc.cluster.interceptor.ClusterInterceptor.intercept(ClusterInterceptor.java:47) at org.apache.dubbo.rpc.cluster.support.wrapper.AbstractCluster$InterceptorInvokerNode.invoke(AbstractCluster.java:92) at org.apache.dubbo.rpc.cluster.support.wrapper.MockClusterInvoker.invoke(MockClusterInvoker.java:98) at org.apache.dubbo.registry.client.migration.MigrationInvoker.invoke(MigrationInvoker.java:170) at org.apache.dubbo.rpc.proxy.InvokerInvocationHandler.invoke(InvokerInvocationHandler.java:96) at org.apache.dubbo.common.bytecode.proxy0.$invoke(proxy0.java) at pro.shushi.pamirs.framework.faas.distribution.computer.RemoteComputer.compute(RemoteComputer.java:124) at pro.shushi.pamirs.framework.faas.FunEngine.run(FunEngine.java:80) at pro.shushi.pamirs.distribution.faas.remote.spi.service.RemoteFunctionHelper.run(RemoteFunctionHelper.java:68) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:109) … 20 more Caused…

    2023年11月28日
    98100
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.4K00
  • 协同开发支持

    协同开发概述 在使用Oinone进行业务开发中,目前开发方式为: 开发各个本地启动项目 与 设计器环境共库共redis的方式进行。 在多个开发人员同时修改一个模型,或者没有及时更新其他同学提交的代码时,存在业务模型创建的数据表字段被删除的情况,协同开发模式正式为解决这个问题而生。 版本支持 4.7.x版本 已经包含分布式支持。 使用步骤 1、业务后端boot工程引入协同开发包 <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-session-cd</artifactId> </dependency> 2、yml文件配置ownSign pamirs: distribution: session: allMetaRefresh: false ownSign: wangxian 配置说明:allMetaRefresh,全量刷新Redis中的元数据,绝大多数情况下都不需要配置;1)第一次启动或者Redis的缓存被清空后,会自动进行全量。2)配置为true表示强制进行全量,一般都不需要配置;3)【推荐】默认增量的方式(即allMetaRefresh: false)写入redis的数据更少,相应的启动速度也更快4)【强制】ownSign是环境隔离的设置,同一个项目组不同的开发人员之间,ownSign配置成不同的(即各自配置成各自的,达到互不干扰) 3、业务系统DB和缓存的约束1)【强制】业务库和设计器Redis共用,包括Redis的前缀,租户和系统隔离键都需要一样(这三个值影响RedisKey的拼接)2)【强制】base库业务系统与设计器共用;3) 【强制】公共库即pamirs (资源-resource、用户-user、权限-auth、文件-file等)共用;4)【强制】「业务库」数据源的别名必须一直,每个开发人员必须配置到自己的本地 或者是远程库库加一个后缀区分; 4、开发同学在各自访问设计器时,URL最后面增加;ownSign=wangxian后回车,ownSign会被保存到浏览器缓存中,后续访问其他的URL访问不需要再次输入;如果需要去掉ownSign的值,则直接把界面上的悬浮窗删掉即可。说明:访问设计URL上增加的ownSign需要与开发各自本地项目yml文件中ownSign的值相同。(每个开发人员各自用各自的ownSign)PS:具体参数配置详见Oinone协同开发使用手册

    2023年12月4日
    1.3K00

Leave a Reply

登录后才能评论