Oinone远程调用链路源码分析

前提

源码分析版本是 5.1.x版本

概要

在服务启动时,获取注解REMOTE的函数,通过dubbo的泛化调用发布。在调用函数时,通过dubbo泛化调用获取结果。

注册服务者

  1. 在spring 启动方法installOrLoad中初始化
  2. 寻找定义REMOTE的方法
  3. 组装dubbo的服务配置
  4. 组装服务对象实现引用,内容如下,用于注册
    • 调用前置处理
      • 放信息到SessionApi
      • 函数调用链追踪,放到本地TransmittableThreadLocal
      • 从redis中获取到的数据进行反序列化并存在到本地的线程里
      • Trace信息,放一份在sessionApi中 和ThreadLocal
    • 调用函数执行
    • 返回数据转成特定格式
  5. 通过线程组调用dubbo的ServiceConfig.export 服务发布

时序图

Oinone远程调用链路源码分析
注册

源码分析

根据条件判断,确定向dubbo进行服务发布
RemoteServiceLoader

public void publishService(List<FunctionDefinition> functionList,Map<String,Runnable> isPublished) {
        // 因为泛化接口只能控制到namespace,控制粒度不能到fun级别,这里进行去重处理
        Map<String, Function> genericNamespaceMap = new HashMap<>();
        for (FunctionDefinition functionDefinition : functionList) {
            Function function = new Function(functionDefinition)

            try {
               //定义REMOTE, 才给予远程调用
                if (FunctionOpenEnum.REMOTE.in(function.getOpen()) && !ClassUtils.isInterface(function.getClazz())) {
                    genericNamespaceMap.putIfAbsent(RegistryUtils.getRegistryInterface(function), function);
                }
            } catch (PamirsException e) {
            }
        }
        // 发布远程服务
        for (String namespace : genericNamespaceMap.keySet()) {
            Function function = genericNamespaceMap.get(namespace);
            if(isPublished.get(RegistryUtils.getRegistryInterface(function)) == null){
                // 发布,注册远程函数服务,底层使用dubbo的泛化调用
                Runnable registryTask = () -> remoteRegistry.registryService(function);
                isPublished.put(RegistryUtils.getRegistryInterface(function),registryTask);
            }else{

            }
        }
    }

构造ServiceConfig方法,设置成泛化调用,进行发布export()
DefaultRemoteRegistryComponent

     public void registryGenericService(String interfaceName, List<MethodConfig> methods,
                                       String group, String version, Integer timeout, Integer retries) {
        ....
        try {
            ServiceConfig<GenericService> service = new ServiceConfig<>();
            // 服务接口名
            service.setInterface(interfaceName);
            // 服务对象实现引用
            service.setRef(genericService(interfaceName));
            if (null != methods) {
                service.setMethods(methods);
            }
            // 声明为泛化接口
            service.setGeneric(Boolean.TRUE.toString());
            // 基础元数据
            constructService(group, version, timeout, retries, service);
            service.export();
        } catch (Exception e) {
           .....
        }
    }

// 服务对象实现引用
private GenericService genericService(String interfaceName) {
        return (method, parameterTypes, args) -> {
            PamirsSession.clear();
            Function function = Objects.requireNonNull(PamirsSession.getContext()).getFunction(RegistryUtils.getFunctionNamespace(method), RegistryUtils.getFunctionFun(method));
            if (log.isDebugEnabled()) {
                log.debug("interfaceName: " + interfaceName + ", isDataManage: " + function.isDataManager());
            }
            try {
                //前置处理:服务提供者,对请求参数进行对象化拆解,并对请求携带的上下文进行处理
                // 放信息到SessionApi
                // 函数调用链追踪,放到本地TransmittableThreadLocal
                // CommonMetaDataCacheApi.computeMetaData() 从redis中获取到的数据进行反序列化并存在到本地的TL中
                // DataAuditApi.computeDataAuditSession() Trace信息,放一份在sessionApi中 和ThreadLocal中
                Object[] args1 = Spider.getDefaultExtension(RemoteRequestArgApi.class).providerHandle(function.getNamespace(), function.getFun(), args, function.getArguments());

                Object result = FunEngine.get().exclude(ScriptType.REMOTE).run(function, args1);

                //后置处理:服务提供者,对结果进行对象化封装、携带请求上下文进行处理
                return Spider.getDefaultExtension(RemoteResponseApi.class).providerHandle(function, method, result);
            } catch (Throwable e) {
                return Spider.getDefaultExtension(RemoteResponseApi.class).providerExceptionHandle(function, method, e);
            } finally {
                PamirsSession.clear();
            }
        };
    }

注册消费者

  1. 函数处理调用
  2. 注册服务消费者
    • 从ReferenceConfigCache获取泛化
  3. 调用dubbo泛化调用接口
  4. 获取返回信息
    • 获取用户id,放入PamirsSession
    • 如果开启debug模式
      • 存入DEBUG_THREAD_LOCAL本地线程
    • 返回格式
      • IWrapper
      • Pagination
      • Result

时序图

Oinone远程调用链路源码分析

源码分析

泛化调用dobbo接口,并解析返回对象
RemoteComputer

public Object compute(Function function, Object... args) {

        .....
        List<Arg> functionArguments = function.getArguments();
        String methodName = RegistryUtils.getGenericServiceMethodName(function);
        String[] argTypes = FunctionUtils.fetchArgTypes(functionArguments);
        //前置处理:服务消费者,对请求参数进行对象化封装、携带请求上下文进行处理
        Object[] arguments = getRemoteRequestApi().consumerHandle(function.getNamespace(),function.getFun(), args, functionArguments);
        // 泛化调用
        Object result = invoke(function, methodName, argTypes, arguments);
        .....
        //后置处理:服务消费者,对返回结果进行对象化拆解,并对结果携带的上下文进行处理
        // 数据转成IWrapper/Pagination/Result
        return getRemoteResponseApi().consumerHandle(function, result);
}

// 配置请求信息,通过$invoke 实际调用
private Object invoke(Function function, String methodName, String[] argTypes, Object[] arguments) {
        Object result;
        String configCdOwnSign = getSessionFillOwnSignApi().getConfigCdOwnSign();
        if (StringUtils.isBlank(configCdOwnSign)) {
.....
        } else {
            try {
            // 获取服务,由于是泛化调用,所以获取的一定是GenericService类型
                GenericService remoteClient = CommonApiFactory.getApi(RemoteRegistry.class).registryOriginConsumer(function);
         // 第一个参数是需要调用的方法名
         // 第二个参数是需要调用的方法的参数类型数组,为String数组,里面存入参数的全类名。
         // 第三个参数是需要调用的方法的参数数组,为Object数组,里面存入需要的参数
                result = remoteClient.$invoke(methodName, argTypes, arguments);
            } catch (RpcException e) {
                ....            }
        }
        return result;
    }

从缓存中获取泛化
DefaultRemoteRegistryComponent

    public GenericService registryGenericConsumer(String interfaceName, List<MethodConfig> methods,
                                                  String group, String version, Integer timeout, Integer retries) {
        ....
        // 创建服务引用配置
        ReferenceConfig<GenericService> reference = new ReferenceConfig<>();
        reference.setInterface(interfaceName);
        // 设置为泛化调用
        reference.setGeneric(Boolean.TRUE.toString());
        if (null != methods) {
            reference.setMethods(methods);
        }
        constructReference(group, version, timeout, retries, reference);
        return ReferenceConfigCache.getCache().get(reference);
    }

名词解释

泛化调用是指在调用方没有服务方提供的API(SDK)的情况下,对服务方进行调用,并且可以正常拿到调用结果
泛化调用(客户端泛化)
实现泛化实现(服务端泛化)

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/17027.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
oinone的头像oinone
上一篇 2024年9月3日 pm12:53
下一篇 2024年9月5日 pm8:13

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00
  • 【OceanBase】后端部署使用 OceanBase 数据库(海扬/OB)

    OceanBase 数据库配置 驱动配置 Maven配置(4.2.5.3版本可用) <oceanbase.version>2.4.14</oceanbase.version> <dependency> <groupId>com.oceanbase</groupId> <artifactId>oceanbase-client</artifactId> <version>${oceanbase.version}</version> </dependency> PS: oceanbase 驱动必须使用 2.4.5 版本或以上,低于此版本的驱动无法使用自增ID功能,无法正常启动。点击查看官方JDBC版本发布记录 JDBC连接配置 OceanBase – Oracle 版 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.alipay.oceanbase.jdbc.Driver url: jdbc:oceanbase://10.xxx.xxx.xxx:1001/BASE?useServerPrepStmts=true&useOraclePrepareExecute=true&defaultFetchSize=4096 username: xxxxxx password: xxxxxx validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.OracleValidConnectionChecker validationQuery: SELECT 1 FROM DUAL OceanBase – MySQL 版 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.alipay.oceanbase.jdbc.Driver url: jdbc:oceanbase://10.xxx.xxx.xxx:1001/base username: xxxxxx password: xxxxxx 连接 URL 配置 点击查看官方JDBC连接配置说明 URL 格式(OceanBase – Oracle 版) jdbc:oceanbase://${host}:${port}/${database}?useServerPrepStmts=true&useOraclePrepareExecute=true&defaultFetchSize=4096 在jdbc连接配置时,useServerPrepStmts=true&useOraclePrepareExecute=true 必须配置,否则自增主键无法正常使用。 defaultFetchSize=4096 意味着在使用服务端预处理时,游标每次获取的结果集行数,驱动默认值为 10,在进行大量数据获取时会出现卡顿的现象,因此推荐使用 4096 作为其结果集大小。过大可能会导致 OOM,过小可能还是会出现卡顿,该值需要按实际情况进行配置。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置(OceanBase – Oracle 版) PS:OceanBase – MySQL 版无需配置方言,只需修改数据库连接即可正常使用。 pamirs方言配置 pamirs: dialect: ds: base: type: OceanBase version: 4.2.5.3 major-version: oracle-4.2 pamirs: type: OceanBase version: 4.2.5.3 major-version: oracle-4.2 plus: configuration: jdbc-type-for-null: "NULL" using-model-as-property: true using-statement-handler-dialect: true mapper: batch: collectionCommit default-batch-config: read: 500 write: 100 数据库版本 type version majorVersion 4.2.5.3 OceanBase 4.2.5.3 oracle-4.2 PS:由于方言开发环境为4.2.5.3版本,其他类似版本(4.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: Oracle version: 12.2 major-version: 12c type version majorVersion Oracle 12.2 12c PS:由于 schedule 的方言与 Oracle 数据库并无明显差异,OceanBase 数据库可以直接使用 Oracle 数据库方言。 其他配置(OceanBase – Oracle 版) 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (CAST(SYSTIMESTAMP AS DATE) – TO_DATE('1970-01-01 08:00:00', 'YYYY-MM-DD HH24:MI:SS')) * 8640000000000

    2025年7月21日
    63300
  • Oinone请求调用链路

    Oinone请求调用链路 请求格式与简单流程 在Oinone中请求数据存储在请求体中,以GQL的方式进行表示,也就是GQL格式的请求。 当我们发送一个GQL格式的请求,后端会对GQL进行解析,确定想要执行的方法,并对这个方法执行过程中所用到的模型进行构建,最后返回响应。 请求 # 请求路径 pamirs/base http://127.0.0.1:8090/pamirs/base # 请求体内容 query{ petShopProxyBQuery{ sayHello(shop:{shopName:"cpc"}){ shopName } } } 解析 # 简单理解 query 操作类型 petShopProxyBQuery 模块名称 + Query sayHello 方法 fun sayHello() 可以传入参数,参数名为 shop shopName 需要得到的值 响应 # data中的内容 "data": { "petShopQuery": { "hello": { "shopName": "cpc" } } } 具体流程 Oinone是基于SpringBoot的,在Controller中处理请求 会接收所有以 /pamirs 开始的POST请求,/pamirs/后携带的是模块名 @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { …….. } 整体脉络 第四步执行中有两大重要的步骤,一步是动态构建GQL,一步是执行请求。 动态构建GQL 请求执行

    2024年12月1日
    95300
  • 协同开发支持

    协同开发概述 在使用Oinone进行业务开发中,目前开发方式为: 开发各个本地启动项目 与 设计器环境共库共redis的方式进行。 在多个开发人员同时修改一个模型,或者没有及时更新其他同学提交的代码时,存在业务模型创建的数据表字段被删除的情况,协同开发模式正式为解决这个问题而生。 版本支持 4.7.x版本 已经包含分布式支持。 使用步骤 1、业务后端boot工程引入协同开发包 <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-session-cd</artifactId> </dependency> 2、yml文件配置ownSign pamirs: distribution: session: allMetaRefresh: false ownSign: wangxian 配置说明:allMetaRefresh,全量刷新Redis中的元数据,绝大多数情况下都不需要配置;1)第一次启动或者Redis的缓存被清空后,会自动进行全量。2)配置为true表示强制进行全量,一般都不需要配置;3)【推荐】默认增量的方式(即allMetaRefresh: false)写入redis的数据更少,相应的启动速度也更快4)【强制】ownSign是环境隔离的设置,同一个项目组不同的开发人员之间,ownSign配置成不同的(即各自配置成各自的,达到互不干扰) 3、业务系统DB和缓存的约束1)【强制】业务库和设计器Redis共用,包括Redis的前缀,租户和系统隔离键都需要一样(这三个值影响RedisKey的拼接)2)【强制】base库业务系统与设计器共用;3) 【强制】公共库即pamirs (资源-resource、用户-user、权限-auth、文件-file等)共用;4)【强制】「业务库」数据源的别名必须一直,每个开发人员必须配置到自己的本地 或者是远程库库加一个后缀区分; 4、开发同学在各自访问设计器时,URL最后面增加;ownSign=wangxian后回车,ownSign会被保存到浏览器缓存中,后续访问其他的URL访问不需要再次输入;如果需要去掉ownSign的值,则直接把界面上的悬浮窗删掉即可。说明:访问设计URL上增加的ownSign需要与开发各自本地项目yml文件中ownSign的值相同。(每个开发人员各自用各自的ownSign)PS:具体参数配置详见Oinone协同开发使用手册

    2023年12月4日
    1.3K00
  • 自定义createorupdate方法时,关联模型数据怎么保存?

    需要自己手动增加保存关联模型数据的逻辑。 多对一、一对一以及一对多 可直接用fieldSave进行保存即可 //如 data.fieldSave(PamirsEmployee::getPositions); 多对多 需要对数据进行处理,前端提交过来的数据,进行判断,是新增还是修改,或者删除

    2023年11月1日
    1.2K00

Leave a Reply

登录后才能评论