Oinone远程调用链路源码分析

前提

源码分析版本是 5.1.x版本

概要

在服务启动时,获取注解REMOTE的函数,通过dubbo的泛化调用发布。在调用函数时,通过dubbo泛化调用获取结果。

注册服务者

  1. 在spring 启动方法installOrLoad中初始化
  2. 寻找定义REMOTE的方法
  3. 组装dubbo的服务配置
  4. 组装服务对象实现引用,内容如下,用于注册
    • 调用前置处理
      • 放信息到SessionApi
      • 函数调用链追踪,放到本地TransmittableThreadLocal
      • 从redis中获取到的数据进行反序列化并存在到本地的线程里
      • Trace信息,放一份在sessionApi中 和ThreadLocal
    • 调用函数执行
    • 返回数据转成特定格式
  5. 通过线程组调用dubbo的ServiceConfig.export 服务发布

时序图

Oinone远程调用链路源码分析
注册

源码分析

根据条件判断,确定向dubbo进行服务发布
RemoteServiceLoader

public void publishService(List<FunctionDefinition> functionList,Map<String,Runnable> isPublished) {
        // 因为泛化接口只能控制到namespace,控制粒度不能到fun级别,这里进行去重处理
        Map<String, Function> genericNamespaceMap = new HashMap<>();
        for (FunctionDefinition functionDefinition : functionList) {
            Function function = new Function(functionDefinition)

            try {
               //定义REMOTE, 才给予远程调用
                if (FunctionOpenEnum.REMOTE.in(function.getOpen()) && !ClassUtils.isInterface(function.getClazz())) {
                    genericNamespaceMap.putIfAbsent(RegistryUtils.getRegistryInterface(function), function);
                }
            } catch (PamirsException e) {
            }
        }
        // 发布远程服务
        for (String namespace : genericNamespaceMap.keySet()) {
            Function function = genericNamespaceMap.get(namespace);
            if(isPublished.get(RegistryUtils.getRegistryInterface(function)) == null){
                // 发布,注册远程函数服务,底层使用dubbo的泛化调用
                Runnable registryTask = () -> remoteRegistry.registryService(function);
                isPublished.put(RegistryUtils.getRegistryInterface(function),registryTask);
            }else{

            }
        }
    }

构造ServiceConfig方法,设置成泛化调用,进行发布export()
DefaultRemoteRegistryComponent

     public void registryGenericService(String interfaceName, List<MethodConfig> methods,
                                       String group, String version, Integer timeout, Integer retries) {
        ....
        try {
            ServiceConfig<GenericService> service = new ServiceConfig<>();
            // 服务接口名
            service.setInterface(interfaceName);
            // 服务对象实现引用
            service.setRef(genericService(interfaceName));
            if (null != methods) {
                service.setMethods(methods);
            }
            // 声明为泛化接口
            service.setGeneric(Boolean.TRUE.toString());
            // 基础元数据
            constructService(group, version, timeout, retries, service);
            service.export();
        } catch (Exception e) {
           .....
        }
    }

// 服务对象实现引用
private GenericService genericService(String interfaceName) {
        return (method, parameterTypes, args) -> {
            PamirsSession.clear();
            Function function = Objects.requireNonNull(PamirsSession.getContext()).getFunction(RegistryUtils.getFunctionNamespace(method), RegistryUtils.getFunctionFun(method));
            if (log.isDebugEnabled()) {
                log.debug("interfaceName: " + interfaceName + ", isDataManage: " + function.isDataManager());
            }
            try {
                //前置处理:服务提供者,对请求参数进行对象化拆解,并对请求携带的上下文进行处理
                // 放信息到SessionApi
                // 函数调用链追踪,放到本地TransmittableThreadLocal
                // CommonMetaDataCacheApi.computeMetaData() 从redis中获取到的数据进行反序列化并存在到本地的TL中
                // DataAuditApi.computeDataAuditSession() Trace信息,放一份在sessionApi中 和ThreadLocal中
                Object[] args1 = Spider.getDefaultExtension(RemoteRequestArgApi.class).providerHandle(function.getNamespace(), function.getFun(), args, function.getArguments());

                Object result = FunEngine.get().exclude(ScriptType.REMOTE).run(function, args1);

                //后置处理:服务提供者,对结果进行对象化封装、携带请求上下文进行处理
                return Spider.getDefaultExtension(RemoteResponseApi.class).providerHandle(function, method, result);
            } catch (Throwable e) {
                return Spider.getDefaultExtension(RemoteResponseApi.class).providerExceptionHandle(function, method, e);
            } finally {
                PamirsSession.clear();
            }
        };
    }

注册消费者

  1. 函数处理调用
  2. 注册服务消费者
    • 从ReferenceConfigCache获取泛化
  3. 调用dubbo泛化调用接口
  4. 获取返回信息
    • 获取用户id,放入PamirsSession
    • 如果开启debug模式
      • 存入DEBUG_THREAD_LOCAL本地线程
    • 返回格式
      • IWrapper
      • Pagination
      • Result

时序图

Oinone远程调用链路源码分析

源码分析

泛化调用dobbo接口,并解析返回对象
RemoteComputer

public Object compute(Function function, Object... args) {

        .....
        List<Arg> functionArguments = function.getArguments();
        String methodName = RegistryUtils.getGenericServiceMethodName(function);
        String[] argTypes = FunctionUtils.fetchArgTypes(functionArguments);
        //前置处理:服务消费者,对请求参数进行对象化封装、携带请求上下文进行处理
        Object[] arguments = getRemoteRequestApi().consumerHandle(function.getNamespace(),function.getFun(), args, functionArguments);
        // 泛化调用
        Object result = invoke(function, methodName, argTypes, arguments);
        .....
        //后置处理:服务消费者,对返回结果进行对象化拆解,并对结果携带的上下文进行处理
        // 数据转成IWrapper/Pagination/Result
        return getRemoteResponseApi().consumerHandle(function, result);
}

// 配置请求信息,通过$invoke 实际调用
private Object invoke(Function function, String methodName, String[] argTypes, Object[] arguments) {
        Object result;
        String configCdOwnSign = getSessionFillOwnSignApi().getConfigCdOwnSign();
        if (StringUtils.isBlank(configCdOwnSign)) {
.....
        } else {
            try {
            // 获取服务,由于是泛化调用,所以获取的一定是GenericService类型
                GenericService remoteClient = CommonApiFactory.getApi(RemoteRegistry.class).registryOriginConsumer(function);
         // 第一个参数是需要调用的方法名
         // 第二个参数是需要调用的方法的参数类型数组,为String数组,里面存入参数的全类名。
         // 第三个参数是需要调用的方法的参数数组,为Object数组,里面存入需要的参数
                result = remoteClient.$invoke(methodName, argTypes, arguments);
            } catch (RpcException e) {
                ....            }
        }
        return result;
    }

从缓存中获取泛化
DefaultRemoteRegistryComponent

    public GenericService registryGenericConsumer(String interfaceName, List<MethodConfig> methods,
                                                  String group, String version, Integer timeout, Integer retries) {
        ....
        // 创建服务引用配置
        ReferenceConfig<GenericService> reference = new ReferenceConfig<>();
        reference.setInterface(interfaceName);
        // 设置为泛化调用
        reference.setGeneric(Boolean.TRUE.toString());
        if (null != methods) {
            reference.setMethods(methods);
        }
        constructReference(group, version, timeout, retries, reference);
        return ReferenceConfigCache.getCache().get(reference);
    }

名词解释

泛化调用是指在调用方没有服务方提供的API(SDK)的情况下,对服务方进行调用,并且可以正常拿到调用结果
泛化调用(客户端泛化)
实现泛化实现(服务端泛化)

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/17027.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
oinone的头像oinone
上一篇 2024年9月3日 pm12:53
下一篇 2024年9月5日 pm8:13

相关推荐

  • 低无一体使用 (后端)

    低无一体使用 (后端) 低无一体应用 打开低无一体应用。 选择应用模块 在选择模块选择框中,下拉选择需要使用低无一体的应用模块。 生成SDK 点击生成SDK, 生成当前选择应用模块的低无一体SDK。 点击之后的系统消息 提示"生成SDK成功",表示操作完成。 生成扩展工程 点击下载扩展工程模板, 生成当前选择应用模块的低无一体SDK。 点击之后的系统消息 提示"下载扩展工程模板成功",表示操作完成。 之后刷新页面 下载扩展工程 使用系统消息中的链接或者详情页中的下载地址下载扩展工程 扩展工程结构概览 自定义Action示例 import org.springframework.stereotype.Component; import pro.shushi.oinone.stand.testExt.model.Model0000000001; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.api.dto.condition.Pagination; import pro.shushi.pamirs.meta.api.dto.wrapper.IWrapper; import pro.shushi.pamirs.meta.constant.FunctionConstants; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; /** * Model0000000001Action * * @author yakir on 2025/01/20 14:59. */ @Component @Model.model(Model0000000001.MODEL_MODEL) public class Model0000000001Action { @Function.Advanced(type = FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<Model0000000001> queryPage(Pagination<Model0000000001> page, IWrapper<Model0000000001> queryWrapper) { return new Model0000000001().queryPage(page, queryWrapper); } @Action(displayName = "sayHello") @Action.Advanced(type = FunctionTypeEnum.QUERY) public Model0000000001 sayHello(Model0000000001 query) { query.setName(query.getName() + System.currentTimeMillis()); return query; } } 注意事项 ⚠️⚠️⚠️ Oinone底层依赖版本与设计器和业务应用一致 (参考 版本更新日志 ) 扩展工程如需独立启动, 手动修改application.yml中安装模块和pom.xml中模块jar的依赖配置

    2025年2月17日
    86500
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    89500
  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    2.0K00
  • 如何通过自定义支持excel导出的动态表头

    介绍 本文需要阅读过前置文档如何自定义Excel导出功能,动态表头的功能在前置文档的基础上做的进一步扩展,本文未提到的部分都参考这个前置文档。 在日常的业务开发中,我们在导出的场景会遇到需要设置动态表头的场景,比如统计商品在最近1个月的销量,固定表头列为商品的名称等基础信息,动态表头列为最近一个月的日期,在导出的时候设置每个日期的销量,本文将通过此业务场景提供示例代码。 1.自定义导出任务模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemDynamicExcelExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel动态表头导出任务") public class DemoItemDynamicExcelExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemDynamicExcelExportTask"; } 2.自定义导出任务处理数据的扩展点 package pro.shushi.pamirs.demo.core.excel.exportdemo.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.FetchUtil; import pro.shushi.pamirs.core.common.cache.MemoryIterableSearchCache; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.file.api.config.FileConstant; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.entity.EasyExcelCellDefinition; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelFixedHeadHelper; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.framework.common.entry.TreeNode; import pro.shushi.pamirs.meta.annotation.ExtPoint; import pro.shushi.pamirs.meta.api.CommonApiFactory; import pro.shushi.pamirs.meta.api.core.orm.ReadApi; import pro.shushi.pamirs.meta.api.core.orm.systems.relation.RelationReadApi; import pro.shushi.pamirs.meta.api.dto.config.ModelConfig; import pro.shushi.pamirs.meta.api.dto.config.ModelFieldConfig; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.enmu.TtypeEnum; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.*; @Component public class DemoItemDynamicExportExtPoint extends ExcelExportSameQueryPageTemplate<DemoItem> implements ExcelTemplateInit { public static final String TEMPLATE_NAME ="商品动态导出"; @Override public List<ExcelWorkbookDefinition> generator() { ExcelFixedHeadHelper excelFixedHeadHelper = ExcelHelper.fixedHeader(DemoItem.MODEL_MODEL,TEMPLATE_NAME) .createBlock(TEMPLATE_NAME, DemoItem.MODEL_MODEL) .setType(ExcelTemplateTypeEnum.EXPORT); return Collections.singletonList(excelFixedHeadHelper.build()); } public static void buildHeader(ExcelFixedHeadHelper excelFixedHeadHelper) { excelFixedHeadHelper.addColumn("name","名称") .addColumn("cateName","类目") .addColumn("searchFrom","搜索来源") .addColumn("description","描述") .addColumn("itemPrice","单价") .addColumn("inventoryQuantity","库存"); } @Override @ExtPoint.Implement(expression = "context.model == \"" + DemoItem.MODEL_MODEL+"\" && context.name == \"" +TEMPLATE_NAME+"\"" ) public List<Object> fetchExportData(ExcelExportTask exportTask, ExcelDefinitionContext context) { List<Object> result = super.fetchExportData(exportTask,context); Object block = result.get(0); if (block instanceof ArrayList) { ((List<Object>) block).forEach(o -> { if (o instanceof DemoItem) { DemoItem item = (DemoItem) o; // TODO 设置动态表头部分字段的值 item.get_d().put("2024-09-10", "1111"); item.get_d().put("2024-09-11", "2222"); }…

    2024年9月11日
    3.3K00

Leave a Reply

登录后才能评论