平台配置日志输出和推送到APM与LogStash

场景描述

目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能:

  • 日志输出到特定目录的特定文件名中
  • 指定以日志保留策略(单个文件大小和文件保留个数)
  • 日志输出到APM工具中(如skywalking)
  • 日志推送到LogStash

日志自定义输出

不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式):

方式一

bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如:

logging:
  config: classpath:logback-pre.xml

方式二

resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。

日志自定义场景

配置日志推送到LogStash

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

skywalking的日志rpc上传

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

完整的代码示例

  • Logback自定义字段
package pro.shushi.pamirs.demo.core.config;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import ch.qos.logback.classic.spi.LoggerContextListener;
import ch.qos.logback.core.Context;
import ch.qos.logback.core.spi.ContextAwareBase;
import ch.qos.logback.core.spi.LifeCycle;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 *  Logback自定义字段
 *
 * @author wx@shushi.pro
 * @date 2024/4/17
 */
public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle {

    private boolean started = false;

    @Override
    public boolean isResetResistant() {
        return false;
    }

    @Override
    public void onStart(LoggerContext loggerContext) {
    }

    @Override
    public void onReset(LoggerContext loggerContext) {
    }

    @Override
    public void onStop(LoggerContext loggerContext) {
    }

    @Override
    public void onLevelChange(Logger logger, Level level) {
    }

    @Override
    public void start() {
        if (started) {
            return;
        }
        Context context = getContext();
        // 机器名称
        context.putProperty("server.name", getHostName());
        // 机器IP地址
        context.putProperty("ip", getHostAddress());
        started = true;
    }

    @Override
    public void stop() {
    }

    @Override
    public boolean isStarted() {
        return false;
    }

    private String getHostName() {
        try {
            return InetAddress.getLocalHost().getHostName();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }

    private String getHostAddress() {
        try {
            return InetAddress.getLocalHost().getHostAddress();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }
}
  • logback-dev.xml完整内容
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <!-- 日志输出格式 -->
    <property name="CONSOLE_LOG_PATTERN" value="%d |-%p [%tid] %class:%line - %m%n"/>

    <!-- 控制台日志 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!-- 文件日志 -->
    <appender name="fileLogger"
              class="ch.qos.logback.core.rolling.RollingFileAppender">
        <File>/Users/wangxian/logs/pamirs-demo.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <fileNamePattern>/Users/wangxian/logs/pamirs-demo-%d-%i.log</fileNamePattern>
            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
                <!-- 日志文件的最多存储64MB -->
                <maxFileSize>500MB</maxFileSize>
            </timeBasedFileNamingAndTriggeringPolicy>
           <!--日志文件保留天数-->
            <maxHistory>15</maxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

    <root level="INFO">
        <appender-ref ref="STDOUT"/>
        <appender-ref ref="LogStash"/>
        <appender-ref ref="SkyWalkingLogs"/>
    </root>

    <!-- Nacos的心跳检测日志级别设置 (会自动继承root 的appender) -->
    <logger name="com.alibaba" level="ERROR">
    </logger>
    <!-- xxl-job心跳检查日志级别 -->
    <logger name="com.xxl.job.core.thread" level="ERROR"/>
</configuration>
  • 分为debug、info、warn、error四种类型的日志信息,分别保存到此四个文件夹中,并按大小和日期进行归档
<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->

<!-- 根节点<configuration>,包含下面三个属性:-->
<!-- scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!-- scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!-- debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration>
   <contextName>dimples-logback</contextName>
   <!-- name的值是变量的名称,value的值时变量定义的值。通过定义的值会被插入到logger上下文中。定义变量后,可以使“${}”来使用变量。 -->
   <property name="log.path" value="C:/springboot-log/logs" />

   <!-- 彩色日志 -->
   <!-- 彩色日志依赖的渲染类 -->
   <conversionRule conversionWord="clr"
      converterClass="org.springframework.boot.logging.logback.ColorConverter" />
   <conversionRule conversionWord="wex"
      converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter" />
   <conversionRule conversionWord="wEx"
      converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter" />
   <!-- 彩色日志格式 -->
   <property name="CONSOLE_LOG_PATTERN"
      value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" />
   <property name="log.colorPattern" value="%magenta(%d{yyyy-MM-dd HH:mm:ss}) %highlight(%-5level) %boldCyan([${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %yellow(%thread) %green(%logger) %msg%n"/>
   <property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss} %-5level [${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}] %thread %logger %msg%n"/>
   <!-- %m输出的信息,%p日志级别,%t线程名,%d日期,%c类的全名,%i索引【从数字0开始递增】,,, -->
   <!-- appender是configuration的子节点,是负责写日志的组件。 -->
   <!-- ConsoleAppender:把日志输出到控制台 -->
   <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
      <encoder>
         <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
         <!-- 控制台也要使用UTF-8,不要使用GBK,否则会中文乱码 -->
         <charset>UTF-8</charset>
      </encoder>
   </appender>

   <!-- 时间滚动输出 level为 DEBUG 日志 -->
   <appender name="DEBUG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\debug/log_debug.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 日志归档 -->
         <fileNamePattern>${log.path}/debug/log-debug-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录debug级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>debug</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 INFO 日志 -->
   <appender name="INFO_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\info/log_info.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset>
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 每天日志归档路径以及格式 -->
         <fileNamePattern>${log.path}/info/log-info-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录info级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>info</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 WARN 日志 -->
   <appender name="WARN_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\warn/log_warn.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/warn/log-warn-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录warn级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>warn</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!-- RollingFileAppender:滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 -->
   <!--             2.如果日期没有发生变化,但是当前日志的文件大小超过1KB时,对当前日志进行分割 重命名-->
   <!-- 时间滚动输出 level为 ERROR 日志 -->
   <appender name="ERROR_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\error/log_error.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/error/log-error-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录ERROR级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>ERROR</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!--开发环境:打印控制台-->
   <!-- 指定项目中某个包,当有日志操作行为时的日志记录级别 -->
   <!-- com.dimples.springboot.biz为业务逻辑根包,也就是只要是发生在这个根包下面的所有日志操作行为的权限都是DEBUG -->
   <!-- 级别依次为【从高到低】:FATAL > ERROR > WARN > INFO > DEBUG > TRACE  -->
   <springProfile name="dev">
      <logger name="com.dimples.springboot.biz" level="debug" />
   </springProfile>
   <!-- 控制台输出日志级别 -->
   <root level="info">
      <appender-ref ref="CONSOLE" />
      <appender-ref ref="DEBUG_FILE" />
      <appender-ref ref="INFO_FILE" />
      <appender-ref ref="WARN_FILE" />
      <appender-ref ref="ERROR_FILE" />
   </root>

   <!--生产环境:输出到文件-->
   <!--<springProfile name="pro">-->
   <!--<root level="info">-->
   <!--<appender-ref ref="CONSOLE" />-->
   <!--<appender-ref ref="DEBUG_FILE" />-->
   <!--<appender-ref ref="INFO_FILE" />-->
   <!--<appender-ref ref="ERROR_FILE" />-->
   <!--<appender-ref ref="WARN_FILE" />-->
   <!--</root>-->
   <!--</springProfile>-->
</configuration>

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/install/7370.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm3:14
下一篇 2024年5月18日 pm4:45

相关推荐

  • Centos7 部署mysql8详细教程

    安装前准备 1.访问mysql官网下载mysql8软件包 https://dev.mysql.com/downloads/mysql/选择相应的版本如:RPM Bundle mysql-8.0.33-1.el7.x86_64.rpm-bundle.tarRPM Bundle 8.0.33 下载地址:https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar 2.卸载MariaDB [root@haibovm ~]# rpm -qa | grep mariadb mariadb-libs-5.5.60-1.el7_5.x86_64 [root@haibovm ~]# rpm -e –nodeps mariadb-libs-5.5.60-1.el7_5.x86_64 3.检查 libaio numactl 是否安装 [root@haibovm ~]# rpm -qa|grep libaio libaio-0.3.109-13.el7.x86_64 [root@haibovm ~]# rpm -qa|grep numactl numactl-libs-2.0.9-7.el7.x86_64 如果没有检测到请使用以下命令安装 [root@haibovm ~]# yum install libaio numactl -y 4.关闭防火墙selinux(根据自身情况) [root@haibovm ~]# sed -i 's/enforcing/disabled/' /etc/selinux/config [root@haibovm ~]# setenforce 0 [root@haibovm ~]# systemctl stop firewalld [root@haibovm ~]# systemctl disable firewalld Removed symlink /etc/systemd/system/multi-user.target.wants/firewalld.service. Removed symlink /etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service. [root@haibovm ~]# systemctl is-active firewalld unknown 5.防火墙开放端口 [root@haibovm ~]# firewall-cmd –zone=public –add-port=3306/tcp –permanent # 开放3306端口 [root@haibovm ~]# firewall-cmd –zone=public –remove-port=3306/tcp –permanent #关闭3306端口 [root@haibovm ~]# firewall-cmd –reload # 配置立即生效 [root@haibovm ~]# firewall-cmd –zone=public –list-ports # 查看防火墙所有开放的端口 安装mysql8 1.下载mysql8到/opt目录 [root@haibovm ~]# cd /opt/ [root@haibovm opt]# yum install wget -y && wget https://dev.mysql.com/get/Downloads/MySQL-8.0/mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar 2.解压 mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar [root@haibovm opt]# tar -xvf mysql-8.0.33-1.el7.x86_64.rpm-bundle.tar mysql-community-client-8.0.33-1.el7.x86_64.rpm mysql-community-client-plugins-8.0.33-1.el7.x86_64.rpm mysql-community-common-8.0.33-1.el7.x86_64.rpm mysql-community-debuginfo-8.0.33-1.el7.x86_64.rpm mysql-community-devel-8.0.33-1.el7.x86_64.rpm mysql-community-embedded-compat-8.0.33-1.el7.x86_64.rpm mysql-community-icu-data-files-8.0.33-1.el7.x86_64.rpm mysql-community-libs-8.0.33-1.el7.x86_64.rpm mysql-community-libs-compat-8.0.33-1.el7.x86_64.rpm mysql-community-server-8.0.33-1.el7.x86_64.rpm mysql-community-server-debug-8.0.33-1.el7.x86_64.rpm mysql-community-test-8.0.33-1.el7.x86_64.rpm 3.安装 community-common [root@haibovm opt]# rpm -ivh –nodeps –force mysql-community-common-8.0.33-1.el7.x86_64.rpm 警告:mysql-community-common-8.0.33-1.el7.x86_64.rpm: 头V4 RSA/SHA256 Signature, 密钥 ID 3a79bd29: NOKEY 准备中… ################################# [100%] 正在升级/安装… 1:mysql-community-common-8.0.33-1.e################################# [100%] 4.安装 community-libs [root@haibovm opt]# rpm -ivh –nodeps –force mysql-community-libs-8.0.33-1.el7.x86_64.rpm 警告:mysql-community-libs-8.0.33-1.el7.x86_64.rpm: 头V4 RSA/SHA256 Signature, 密钥…

    2023年11月7日
    70400
  • IWrapper、QueryWrapper和LambdaQueryWrapper使用

    条件更新updateByWrapper 通常我们在更新的时候new一个对象出来在去更新,减少更新的字段 Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE), Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId) 使用基础模型的updateById方法更新指定字段的方法: new 一下update对象出来,更新这个对象。 WorkflowUserTask userTaskUp = new WorkflowUserTask(); userTaskUp.setId(userTask.getId()); userTaskUp.setNodeContext(json); userTaskUp.updateById(); 条件删除updateByWrapper public List<T> delete(List<T> data) { List<Long> petTypeIdList = new ArrayList(); for(T item:data){ petTypeIdList.add(item.getId()); } Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList)); return data; } 构造条件查询数据 示例1: LambdaQueryWrapper拼接查询条件 private void queryPetShops() { LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery(); query.from(PetShop.MODEL_MODEL); query.setSortable(Boolean.FALSE); query.orderBy(true, true, PetShop::getId); List<PetShop> petShops2 = new PetShop().queryList(query); System.out.printf(petShops2.size() + ""); } 示例2: IWrapper拼接查询条件 private void queryPetShops() { IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery() .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L); List<PetShop> petShops4 = new PetShop().queryList(wrapper); System.out.printf(petShops4.size() + ""); } 示例3: QueryWrapper拼接查询条件 private void queryPetShops() { //使用Lambda获取字段名,防止后面改字段名漏改 String nameField = LambdaUtil.fetchFieldName(PetTalent::getName); //使用Lambda获取Clumon名,防止后面改字段名漏改 String nameColumn = PStringUtils.fieldName2Column(nameField); QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL) .eq(nameColumn, "test"); List<PetShop> petShops5 = new PetShop().queryList(wrapper2); System.out.printf(petShops5.size() + ""); } IWrapper转为LambdaQueryWrapper @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) { LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda(); // 非存储字段从QueryData中获取 Map<String, Object> queryData = queryWrapper.getQueryData(); if (null != queryData && !queryData.isEmpty()) { String codes = (String) queryData.get("codes"); if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) { wrapper.in(PetShopProxy::getCode, codes.split(",")); } } return new PetShopProxy().queryPage(page, wrapper); }

    2024年5月25日
    1.5K00
  • 如何自定义SQL(Mapper)语句

    场景描述 在实际业务场景中,存在复杂SQL的情况,具体表现为: 单表单SQL满足不了的情况下 有复杂的Join关系或者子查询 复杂SQL的逻辑通过程序逻辑难以实现或实现代价较大 在此情况下,通过原生的mybatis/mybatis-plus, 自定义Mapper的方式实现业务功能 1、编写所需的Mapper SQL Mapper写法无限制,与使用原生的mybaits/mybaits-plus用法一样; Mapper(DAO)和SQL可以写在一个文件中,也分开写在两个文件中。 package pro.shushi.pamirs.demo.core.map; import org.apache.ibatis.annotations.Mapper; import org.apache.ibatis.annotations.Param; import org.apache.ibatis.annotations.Select; import java.util.List; import java.util.Map; @Mapper public interface DemoItemMapper { @Select("<script>select sum(item_price) as itemPrice,sum(inventory_quantity) as inventoryQuantity,categoryId from ${demoItemTable} as core_demo_item ${where} group by category_id</script>") List<Map<String, Object>> groupByCategoryId(@Param("demoItemTable") String pamirsUserTable, @Param("where") String where); } 2.调用mapper 调用Mapper代码示例 package pro.shushi.pamirs.demo.core.map; import com.google.api.client.util.Lists; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.framework.connectors.data.api.datasource.DsHintApi; import pro.shushi.pamirs.meta.api.core.orm.convert.DataConverter; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils; import java.util.List; import java.util.Map; @Component public class DemoItemDAO { public List<DemoItem> customSqlDemoItem(){ try (DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL)) { String demoItemTable = PamirsSession.getContext().getModelCache().get(DemoItem.MODEL_MODEL).getTable(); DemoItemMapper demoItemMapper = BeanDefinitionUtils.getBean(DemoItemMapper.class); String where = " where status = 'ACTIVE'"; List<Map<String, Object>> dataList = demoItemMapper.groupByCategoryId(demoItemTable,where); DataConverter persistenceDataConverter = BeanDefinitionUtils.getBean(DataConverter.class); return persistenceDataConverter.out(DemoItem.MODEL_MODEL, dataList); } return Lists.newArrayList(); } } 调用Mapper一些说明 启动类需要配置扫描包MapperScan @MapperScan(value = "pro.shushi", annotationClass = Mapper.class) @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, FreeMarkerAutoConfiguration.class}) public class DemoApplication { 调用Mapper接口的时候,需要指定数据源;即上述示例代码中的 DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL), 实际代码中使用 try-with-resources语法。 从Mapper返回的结果中获取数据 如果SQL Mapper中已定义了resultMap,调用Mapper(DAO)返回的就是Java对象 如果Mapper返回的是Map<String, Object>,则通过 DataConverter.out进行转化,参考上面的示例 其他参考:Oinone连接外部数据源方案:https://doc.oinone.top/backend/4562.html

    2023年11月27日
    1.2K00
  • 自定义表达式函数

    由于表达式内的函数在前后端都可能执行,所以同一个表达式需要前后端同时定义 后端表达式自定义 package pro.shushi.pamirs.demo.core.fun; import org.apache.commons.lang3.StringUtils; import org.joda.time.DateTime; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.common.constants.NamespaceConstants; import java.util.Date; import java.util.List; import static pro.shushi.pamirs.meta.enmu.FunctionCategoryEnum.TEXT; import static pro.shushi.pamirs.meta.enmu.FunctionCategoryEnum.TIME; import static pro.shushi.pamirs.meta.enmu.FunctionLanguageEnum.JAVA; import static pro.shushi.pamirs.meta.enmu.FunctionOpenEnum.LOCAL; import static pro.shushi.pamirs.meta.enmu.FunctionSceneEnum.EXPRESSION; /** * 自定义函数 */ @Fun(NamespaceConstants.expression) public class DemoCustomFunctions { @Function.Advanced( displayName = "逗号分隔字符串数组", language = JAVA, builtin = true, category = TEXT ) @Function.fun("MY_COMMA") @Function(name = "MY_COMMA", scene = {EXPRESSION}, openLevel = LOCAL, summary = "函数示例: MY_COMMA(list)\n函数说明: 将字符串数组转为逗号分隔的字符串" ) public String myComma(List<String> list) { return StringUtils.join(list, ","); } @Function.Advanced( displayName = "根据出生算年龄", language = JAVA, builtin = true, category = TIME ) @Function.fun("CALC_AGE") @Function(name = "CALC_AGE", scene = {EXPRESSION}, openLevel = LOCAL, summary = "函数示例: CALC_AGE(birthDate)\n函数说明: 根据出生算年龄" ) public Integer calcAge(Date birthDate) { if (birthDate == null) { return 0; } return new DateTime().getYear() – new DateTime(birthDate).getYear(); } } 前端表达式定义 定义后导入到main.ts里,导入@kunlun/dependencies的代码之后 import { Expression } from '@kunlun/dependencies'; import dayjs from 'dayjs'; Expression.getInstance().registerFunction('MY_COMMA', ['array'], (list: string[]) => { return (list || []) .map((value) => { return `'${value}'`; }) .join(','); }); Expression.getInstance().registerFunction('CALC_AGE', ['string'], (birthDate: string) => { if (birthDate == null) { return 0; } return Math.ceil(dayjs().year() – dayjs(birthDate,…

    2024年7月10日
    1.4K00
  • 【MSSQL】后端部署使用MSSQL数据库(SQLServer)

    MSSQL数据库配置 驱动配置 Maven配置(2017版本可用) <mssql.version>9.4.0.jre8</mssql.version> <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>mssql-jdbc</artifactId> <version>${mssql.version}</version> </dependency> 离线驱动下载 mssql-jdbc-7.4.1.jre8.jarmssql-jdbc-9.4.0.jre8.jarmssql-jdbc-12.2.0.jre8.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.microsoft.sqlserver.jdbc.SQLServerDriver url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=base username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 暂无官方资料 url格式 jdbc:sqlserver://${host}:${port};DatabaseName=${database} 在jdbc连接配置时,${database}必须配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: MSSQL version: 2017 major-version: 2017 pamirs: type: MSSQL version: 2017 major-version: 2017 数据库版本 type version majorVersion 2017 MSSQL 2017 2017 PS:由于方言开发环境为2017版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: MSSQL version: 2017 major-version: 2017 type version majorVersion MSSQL 2017 2017 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: CAST(DATEDIFF(S, CAST('1970-01-01 00:00:00' AS DATETIME), GETUTCDATE()) AS BIGINT) * 1000000 + DATEPART(NS, SYSUTCDATETIME()) / 100 MSSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE LOGIN [root] WITH PASSWORD = 'password'; — if using mssql database, this authorization is required. ALTER SERVER ROLE [sysadmin] ADD MEMBER [root];

    2024年10月18日
    81700

Leave a Reply

登录后才能评论