平台配置日志输出和推送到APM与LogStash

场景描述

目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能:

  • 日志输出到特定目录的特定文件名中
  • 指定以日志保留策略(单个文件大小和文件保留个数)
  • 日志输出到APM工具中(如skywalking)
  • 日志推送到LogStash

日志自定义输出

不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式):

方式一

bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如:

logging:
  config: classpath:logback-pre.xml

方式二

resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。

日志自定义场景

配置日志推送到LogStash

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

skywalking的日志rpc上传

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

完整的代码示例

  • Logback自定义字段
package pro.shushi.pamirs.demo.core.config;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import ch.qos.logback.classic.spi.LoggerContextListener;
import ch.qos.logback.core.Context;
import ch.qos.logback.core.spi.ContextAwareBase;
import ch.qos.logback.core.spi.LifeCycle;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 *  Logback自定义字段
 *
 * @author wx@shushi.pro
 * @date 2024/4/17
 */
public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle {

    private boolean started = false;

    @Override
    public boolean isResetResistant() {
        return false;
    }

    @Override
    public void onStart(LoggerContext loggerContext) {
    }

    @Override
    public void onReset(LoggerContext loggerContext) {
    }

    @Override
    public void onStop(LoggerContext loggerContext) {
    }

    @Override
    public void onLevelChange(Logger logger, Level level) {
    }

    @Override
    public void start() {
        if (started) {
            return;
        }
        Context context = getContext();
        // 机器名称
        context.putProperty("server.name", getHostName());
        // 机器IP地址
        context.putProperty("ip", getHostAddress());
        started = true;
    }

    @Override
    public void stop() {
    }

    @Override
    public boolean isStarted() {
        return false;
    }

    private String getHostName() {
        try {
            return InetAddress.getLocalHost().getHostName();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }

    private String getHostAddress() {
        try {
            return InetAddress.getLocalHost().getHostAddress();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }
}
  • logback-dev.xml完整内容
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <!-- 日志输出格式 -->
    <property name="CONSOLE_LOG_PATTERN" value="%d |-%p [%tid] %class:%line - %m%n"/>

    <!-- 控制台日志 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!-- 文件日志 -->
    <appender name="fileLogger"
              class="ch.qos.logback.core.rolling.RollingFileAppender">
        <File>/Users/wangxian/logs/pamirs-demo.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <fileNamePattern>/Users/wangxian/logs/pamirs-demo-%d-%i.log</fileNamePattern>
            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
                <!-- 日志文件的最多存储64MB -->
                <maxFileSize>500MB</maxFileSize>
            </timeBasedFileNamingAndTriggeringPolicy>
           <!--日志文件保留天数-->
            <maxHistory>15</maxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

    <root level="INFO">
        <appender-ref ref="STDOUT"/>
        <appender-ref ref="LogStash"/>
        <appender-ref ref="SkyWalkingLogs"/>
    </root>

    <!-- Nacos的心跳检测日志级别设置 (会自动继承root 的appender) -->
    <logger name="com.alibaba" level="ERROR">
    </logger>
    <!-- xxl-job心跳检查日志级别 -->
    <logger name="com.xxl.job.core.thread" level="ERROR"/>
</configuration>
  • 分为debug、info、warn、error四种类型的日志信息,分别保存到此四个文件夹中,并按大小和日期进行归档
<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->

<!-- 根节点<configuration>,包含下面三个属性:-->
<!-- scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!-- scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!-- debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration>
   <contextName>dimples-logback</contextName>
   <!-- name的值是变量的名称,value的值时变量定义的值。通过定义的值会被插入到logger上下文中。定义变量后,可以使“${}”来使用变量。 -->
   <property name="log.path" value="C:/springboot-log/logs" />

   <!-- 彩色日志 -->
   <!-- 彩色日志依赖的渲染类 -->
   <conversionRule conversionWord="clr"
      converterClass="org.springframework.boot.logging.logback.ColorConverter" />
   <conversionRule conversionWord="wex"
      converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter" />
   <conversionRule conversionWord="wEx"
      converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter" />
   <!-- 彩色日志格式 -->
   <property name="CONSOLE_LOG_PATTERN"
      value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" />
   <property name="log.colorPattern" value="%magenta(%d{yyyy-MM-dd HH:mm:ss}) %highlight(%-5level) %boldCyan([${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %yellow(%thread) %green(%logger) %msg%n"/>
   <property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss} %-5level [${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}] %thread %logger %msg%n"/>
   <!-- %m输出的信息,%p日志级别,%t线程名,%d日期,%c类的全名,%i索引【从数字0开始递增】,,, -->
   <!-- appender是configuration的子节点,是负责写日志的组件。 -->
   <!-- ConsoleAppender:把日志输出到控制台 -->
   <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
      <encoder>
         <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
         <!-- 控制台也要使用UTF-8,不要使用GBK,否则会中文乱码 -->
         <charset>UTF-8</charset>
      </encoder>
   </appender>

   <!-- 时间滚动输出 level为 DEBUG 日志 -->
   <appender name="DEBUG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\debug/log_debug.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 日志归档 -->
         <fileNamePattern>${log.path}/debug/log-debug-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录debug级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>debug</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 INFO 日志 -->
   <appender name="INFO_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\info/log_info.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset>
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 每天日志归档路径以及格式 -->
         <fileNamePattern>${log.path}/info/log-info-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录info级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>info</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 WARN 日志 -->
   <appender name="WARN_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\warn/log_warn.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/warn/log-warn-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录warn级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>warn</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!-- RollingFileAppender:滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 -->
   <!--             2.如果日期没有发生变化,但是当前日志的文件大小超过1KB时,对当前日志进行分割 重命名-->
   <!-- 时间滚动输出 level为 ERROR 日志 -->
   <appender name="ERROR_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\error/log_error.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/error/log-error-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录ERROR级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>ERROR</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!--开发环境:打印控制台-->
   <!-- 指定项目中某个包,当有日志操作行为时的日志记录级别 -->
   <!-- com.dimples.springboot.biz为业务逻辑根包,也就是只要是发生在这个根包下面的所有日志操作行为的权限都是DEBUG -->
   <!-- 级别依次为【从高到低】:FATAL > ERROR > WARN > INFO > DEBUG > TRACE  -->
   <springProfile name="dev">
      <logger name="com.dimples.springboot.biz" level="debug" />
   </springProfile>
   <!-- 控制台输出日志级别 -->
   <root level="info">
      <appender-ref ref="CONSOLE" />
      <appender-ref ref="DEBUG_FILE" />
      <appender-ref ref="INFO_FILE" />
      <appender-ref ref="WARN_FILE" />
      <appender-ref ref="ERROR_FILE" />
   </root>

   <!--生产环境:输出到文件-->
   <!--<springProfile name="pro">-->
   <!--<root level="info">-->
   <!--<appender-ref ref="CONSOLE" />-->
   <!--<appender-ref ref="DEBUG_FILE" />-->
   <!--<appender-ref ref="INFO_FILE" />-->
   <!--<appender-ref ref="ERROR_FILE" />-->
   <!--<appender-ref ref="WARN_FILE" />-->
   <!--</root>-->
   <!--</springProfile>-->
</configuration>

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/install/7370.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm3:14
下一篇 2024年5月18日 pm4:45

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00
  • Oinone离线部署设计器镜像

    概述 Oinone平台为合作伙伴提供了多种部署方式,这篇文章将介绍如何在私有云环境部署Oinone平台Docker镜像。 本文以5.2.20.1版本为例进行介绍,使用amd64架构的体验镜像进行部署。具体版本号以数式提供的为准 部署环境要求 包含全部中间件及设计器服务的环境要求 CPU:8 vCPU 内存(RAM):16G以上 硬盘(HDD/SSD):60G以上 仅设计器服务的环境要求 CPU:8 vCPU 内存(RAM):8G以上 硬盘(HDD/SSD):40G以上 部署准备 一台安装了Docker环境的服务器(私有云环境);以下简称部署环境; 一台安装了Docker环境的电脑(可访问公网);以下简称本地环境; 部署清单 下面列举了文章中在本地环境操作结束后的全部文件: 设计器镜像:oinone-designer-full-v5-5.2.20.1-amd64.tar 离线部署结构包:oinone-designer-full-standard-offline.zip Oinone许可证:****-trial.lic(实际文件名以Oinone颁发的许可证为准) 第三方数据库驱动包(非MySQL数据库必须) PS:如需一次性拷贝所有部署文件到部署环境,可以将文档步骤在本地环境执行后,一次性将所有文件进行传输。 在部署环境创建部署目录 mkdir -p /home/admin/oinone-designer-full mkdir -p /home/admin/oinone-designer-full/images 检查部署环境服务器架构 确认部署环境是amd64还是arm64架构,若本文提供的查看方式无法正确执行,可自行搜索相关内容进行查看。 使用uname命令查看 uname -a PS:此步骤非常重要,如果部署环境的服务器架构与本地环境的服务器架构不一致,将导致镜像无法正确启动。 在本地环境准备镜像 在Oinone发布版本一览中选择最新版本的发布日志,找到需要部署的镜像版本。 登录Oinone镜像仓库(若已登录,可忽略此步骤) docker login https://harbor.oinone.top # input username # input password 获取Oinone平台镜像 docker pull harbor.oinone.top/oinone/oinone-designer-full-v5.2:5.2.20.1-amd64 保存镜像到.tar文件 docker save -o oinone-designer-full-v5-5.2.20.1-amd64.tar oinone-designer-full-v5.2:5.2.20.1-amd64 若报错`Error response from daemon: reference does not exist`脚本改成下面这个: docker save -o oinone-designer-full-v5-5.2.20.1-amd64.tar harbor.oinone.top/oinone/oinone-designer-full-v5.2:5.2.20.1-amd64 # docker save [OPTIONS] IMAGE [IMAGE…] 上传.tar到部署环境 scp ./oinone-designer-full-v5-5.2.20.1-amd64.tar admin@127.0.0.1:/home/admin/oinone-full/images/ PS:若无法使用scp方式上传,可根据部署环境的具体情况将镜像文件上传至部署环境的部署目录。 在部署环境加载镜像 加载镜像文件到Docker中 cd /home/admin/oinone-full/images docker load -i oinone-designer-full-v5-5.2.20.1-amd64.tar 查看镜像是否正确加载 docker images 查看输出内容,对比REPOSITORY、TAG、IMAGE ID与本地环境完全一致即可。 设计器服务部署 为了方便起见,服务器操作文件显得不太方便,因此,我们可以在本地环境将部署脚本准备妥善后,传输到部署环境进行部署结构包(oinone-designer-full-standard-offline.)需上传到要部署的服务器中,后面的操作均在这个目中进行 下载离线部署结构包(以数式发出的为准) oinone-designer-full-standard-offline.zip 将Pamirs许可证移动到config目录下,并重命名为****-trial.lic(实际文件名以Oinone颁发的许可证为准) mv ****-trial.lic config/****-trial.lic 加载非MySQL数据库驱动(按需) 将驱动jar文件移动到lib目录下即可。 以KDB8数据库驱动kingbase8-8.6.0.jar为例 mv kingbase8-8.6.0.jar lib/ PS:lib目录为非设计器内置包的外部加载目录(外部库),可以添加任何jar包集成到设计器中。 修改脚本中的配置 修改启动脚本startup.sh 修改对应的镜像版本号, 将IP从192.168.0.121改成宿主机IP configDir=$(pwd) version=5.1.16 IP=192.168.0.121 修改mq/broker.conf 修改其中brokerIP1的IP从192.168.0.121改成宿主机IP brokerClusterName = DefaultCluster namesrvAddr=127.0.0.1:9876 brokerIP1=192.168.0.121 brokerName = broker-a brokerId = 0 deleteWhen = 04 fileReservedTime = 48 brokerRole = ASYNC_MASTER flushDiskType = ASYNC_FLUSH autoCreateTopicEnable=true listenPort=10991 transactionCheckInterval=1000 #存储使用率阀值,当使用率超过阀值时,将拒绝发送消息请求 diskMaxUsedSpaceRatio=98 #磁盘空间警戒阈值,超过这个值则停止接受消息,默认值90 diskSpaceWarningLevelRatio=99 #强制删除文件阈值,默认85 diskSpaceCleanForciblyRatio=97 执行startup.sh脚本启动 sh startup.sh 访问服务 使用http://127.0.0.1:88访问服务

    2024年11月1日
    94300
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.5K00
  • Oinone请求路由源码分析

    通过源码分析,从页面发起请求,如果通过graphQL传输到具体action的链路,并且在这之间做了哪些隐式处理分析源码版本5.1.x 请求流程大致如下: 拦截所有指定的请求 组装成graphQL请求信息 调用graphQL执行 通过hook拦截先执行 RsqlDecodeHook:rsql解密 UserHook: 获取用户信息, 通过cookies获取用户ID,再查表获取用户信息,放到本地Local线程里 RoleHook: 角色Hook FunctionPermissionHook: 函数权限Hook ,跳过权限拦截的实现放在这一层,对应的配置 pamirs: auth: fun-filter: – namespace: user.PamirsUserTransient fun: login #登录 – namespace: top.PetShop fun: action DataPermissionHook: 数据权限hook PlaceHolderHook:占位符转化替换hook RsqlParseHook: 解释Rsql hook SingletonModelUpdateHookBefore 执行post具体内容 通过hook拦截后执行 QueryPageHook4TreeAfter: 树形Parent查询优化 FieldPermissionHook: 字段权限Hook UserQueryPageHookAfter UserQueryOneHookAfter 封装执行结果信息返回 时序图 核心源码解析 拦截所有指定的请求 /pamirs/模块名RequestController @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { } DefaultRequestExecutor 构建graph请求信息,并调用graph请求 () -> execute(GraphQL::execute, param), param private <T> T execute(BiFunction<GraphQL, ExecutionInput, T> executor, PamirsRequestParam param) { // 获取GraphQL请求信息,包含grapsh schema GraphQL graphQL = buildGraphQL(param); … ExecutionInput executionInput = ExecutionInput.newExecutionInput() .query(param.getQuery()) .variables(param.getVariables().getVariables()) .dataLoaderRegistry(Spider.getDefaultExtension(DataLoaderRegistryApi.class).dataLoader()) .build(); … // 调用 GraphQL的方法execute 执行 T result = executor.apply(graphQL, executionInput); … return result; } QueryAndMutationBinder 绑定graphQL读取写入操作 public static DataFetcher<?> dataFetcher(Function function, ModelConfig modelConfig) { if (isAsync()) { if (FunctionTypeEnum.QUERY.in(function.getType())) { return AsyncDataFetcher.async(dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment), ExecutorServiceApi.getExecutorService()); } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } private static Object dataFetcherAction(Function function, ModelConfig modelConfig, DataFetchingEnvironment environment) { try { SessionExtendUtils.tagMainRequest(); // 使用共享的请求和响应对象 return Spider.getDefaultExtension(ActionBinderApi.class) .action(modelConfig,…

    2024年8月21日
    5.5K02
  • 无代码docker启动说明(5.1.0)

    1. 安装docker 1.1 Linux内核系统(以CentOS7为例) 1.1.1 检查防火墙 查看防火墙是否开启 systemctl status firewalld 如防火墙处于开启状态 有2种处理方式,选择其中一种,开发环境如内网环境建议选择处理方案1 处理方案1:停止防火墙 systemctl stop firewalld 处理方案2:开放docker镜像内置中间件透出的端口 88:web访问端口 8099:后端Java服务端口 19876:rocketmq的namesrv端口: 6378:缓存redis的端口 3307:数据库mysql的端口 2182:zookeeper的端口 20880:dubbo的通信端口 10991:rocketmq的broker端口 查看防火墙已经开放的端口 firewall-cmd –list-ports 防火墙新增开放端口示例: firewall-cmd –permanent –zone=public –add-port=88/tcp 新增以后生效需要重新加载防火墙 systemctl reload firewalld 查看端口是否开放成功 firewall-cmd –list-ports 也可以从外部使用telnet命令检查端口是否开放成功,如telnet 192.168.0.121 3307 1.1.2 官方安装地址(docker如已安装请忽略): https://docs.docker.com/engine/install/centos/ yum install -y yum-utils yum-config-manager –add-repo https://download.docker.com/linux/centos/docker-ce.repo 如果docker这个源异常可以用阿里云的源 #yum-config-manager –add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo yum install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin #启动docker systemctl start docker #查看是否安装成功 docker -v 如果无法访问官网,参考阿里云安装Docker CE镜像https://developer.aliyun.com/mirror/docker-ce?spm=a2c6h.13651102.0.0.57e31b11lhSNtT 1.1.3 可使用一键安装脚本(docker如已安装请忽略) wget https://pamirs.oss-cn-hangzhou.aliyuncs.com/docker/quick-install.sh sh quick-install.sh 1.1.4 Docker部署常见问题 https://doc.oinone.top/install/20670.html 1.2 无公网环境Linux系统 需要根据指定的版本以及内核架构来生成对应docker以及镜像包 1.3 window环境 https://docs.docker.com/desktop/install/windows-install/ 2. 解压提供的部署.zip 部署.zip包含: settings-3.6.3.xml:拉取平台jar的maven仓库settings,对应maven版本3.6.x settings-3.8.x.xml:拉取平台jar的maven仓库settings,对应maven版本3.8.x oinone-op-ds-all-full:包含所有中间件及前后端工程,用于启动docker结构和脚本(需拷贝到服务器) oinone-op-ds-all-mini:仅包含前后端工程,用于启动docker结构和脚本(需拷贝到服务器) license:平台证书 docker-mvn-npm账号.md oinone-example:后端示例工程 ss-front-modules:前端示例工程 3. 对应版本的docker镜像拉取 镜像地址 镜像概述 harbor.oinone.top/oinone/oinone-designer-full-v5.1:5.1.16 包含所有中间件及前后端工程(v5.1:5.1.16为示例版本号,实际以Oinone发出来的为准) harbor.oinone.top/oinone/oinone-designer-mini-v5.1:5.1.16 仅包含前后端工程(v5.1:5.1.16为示例版本号,实际以Oinone发出来的为准) 注意:docker镜像拉取的账号密码在部署.zip里面(docker-mvn-npm账号.md) docker login –username=用户名 harbor.oinone.top docker pull harbor.oinone.top/oinone/xxx 4. 修改startup.sh/cmd文件 doker的结构包 oinone-op-ds-all-full 或oinone-op-ds-all-mini 上传到服务器上;下面的操作都是这该文件夹下进行 4.1 linux环境修改参数 在startup.sh文件中找到如下 configDir=$(pwd)version=版本号IP=192.168.0.121 修改对应的IP为docker宿主机IP 4.2 window环境修改参数 在startup.cmd文件中找到如下set configDir=%CD%set version=版本号set IP=192.168.0.121 修改对应的IP为docker宿主机IP 5. 修改mq/broker.conf 注意:使用oinone-op-ds-all-mini版本,无需进行该步操作(直接跳过)注意:使用oinone-op-ds-all-full版本,才需进行该步操作 修改其中brokerIP1的IP从192.168.0.121改成宿主机IP brokerClusterName = DefaultCluster namesrvAddr=127.0.0.1:9876 brokerIP1=192.168.0.121 brokerName = broker-a brokerId = 0 deleteWhen = 04 fileReservedTime = 48 …… 5. 修改config/application.yml 注意:使用oinone-op-ds-all-full版本,无需进行该步操作(直接跳过)注意:使用oinone-op-ds-all-mini版本,才需进行该步操作 修改中间件的配置(oinone-op-ds-all-full版本无需修改),把中间件对应的IP、端口或密码,改成实际提供服务IP、端口或密码。包括: zookeeper mysql rocket-mq redis oss配置 7. 启动Docker 7.1 linux环境启动 在终端执行 sh startup.sh 7.2 window环境启动 用PowerShell 执行 .\startup.cmd 7.3 查看日志,检查是否启动成功 在logs目录下可看到日志文件,第一次启动时间会相对长一些,等看到日志文件中输出 启动耗时…

    2024年8月19日
    2.2K00

Leave a Reply

登录后才能评论