平台配置日志输出和推送到APM与LogStash

场景描述

目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能:

  • 日志输出到特定目录的特定文件名中
  • 指定以日志保留策略(单个文件大小和文件保留个数)
  • 日志输出到APM工具中(如skywalking)
  • 日志推送到LogStash

日志自定义输出

不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式):

方式一

bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如:

logging:
  config: classpath:logback-pre.xml

方式二

resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。

日志自定义场景

配置日志推送到LogStash

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

skywalking的日志rpc上传

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

完整的代码示例

  • Logback自定义字段
package pro.shushi.pamirs.demo.core.config;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import ch.qos.logback.classic.spi.LoggerContextListener;
import ch.qos.logback.core.Context;
import ch.qos.logback.core.spi.ContextAwareBase;
import ch.qos.logback.core.spi.LifeCycle;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 *  Logback自定义字段
 *
 * @author wx@shushi.pro
 * @date 2024/4/17
 */
public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle {

    private boolean started = false;

    @Override
    public boolean isResetResistant() {
        return false;
    }

    @Override
    public void onStart(LoggerContext loggerContext) {
    }

    @Override
    public void onReset(LoggerContext loggerContext) {
    }

    @Override
    public void onStop(LoggerContext loggerContext) {
    }

    @Override
    public void onLevelChange(Logger logger, Level level) {
    }

    @Override
    public void start() {
        if (started) {
            return;
        }
        Context context = getContext();
        // 机器名称
        context.putProperty("server.name", getHostName());
        // 机器IP地址
        context.putProperty("ip", getHostAddress());
        started = true;
    }

    @Override
    public void stop() {
    }

    @Override
    public boolean isStarted() {
        return false;
    }

    private String getHostName() {
        try {
            return InetAddress.getLocalHost().getHostName();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }

    private String getHostAddress() {
        try {
            return InetAddress.getLocalHost().getHostAddress();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }
}
  • logback-dev.xml完整内容
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <!-- 日志输出格式 -->
    <property name="CONSOLE_LOG_PATTERN" value="%d |-%p [%tid] %class:%line - %m%n"/>

    <!-- 控制台日志 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!-- 文件日志 -->
    <appender name="fileLogger"
              class="ch.qos.logback.core.rolling.RollingFileAppender">
        <File>/Users/wangxian/logs/pamirs-demo.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <fileNamePattern>/Users/wangxian/logs/pamirs-demo-%d-%i.log</fileNamePattern>
            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
                <!-- 日志文件的最多存储64MB -->
                <maxFileSize>500MB</maxFileSize>
            </timeBasedFileNamingAndTriggeringPolicy>
           <!--日志文件保留天数-->
            <maxHistory>15</maxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

    <root level="INFO">
        <appender-ref ref="STDOUT"/>
        <appender-ref ref="LogStash"/>
        <appender-ref ref="SkyWalkingLogs"/>
    </root>

    <!-- Nacos的心跳检测日志级别设置 (会自动继承root 的appender) -->
    <logger name="com.alibaba" level="ERROR">
    </logger>
    <!-- xxl-job心跳检查日志级别 -->
    <logger name="com.xxl.job.core.thread" level="ERROR"/>
</configuration>
  • 分为debug、info、warn、error四种类型的日志信息,分别保存到此四个文件夹中,并按大小和日期进行归档
<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->

<!-- 根节点<configuration>,包含下面三个属性:-->
<!-- scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!-- scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!-- debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration>
   <contextName>dimples-logback</contextName>
   <!-- name的值是变量的名称,value的值时变量定义的值。通过定义的值会被插入到logger上下文中。定义变量后,可以使“${}”来使用变量。 -->
   <property name="log.path" value="C:/springboot-log/logs" />

   <!-- 彩色日志 -->
   <!-- 彩色日志依赖的渲染类 -->
   <conversionRule conversionWord="clr"
      converterClass="org.springframework.boot.logging.logback.ColorConverter" />
   <conversionRule conversionWord="wex"
      converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter" />
   <conversionRule conversionWord="wEx"
      converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter" />
   <!-- 彩色日志格式 -->
   <property name="CONSOLE_LOG_PATTERN"
      value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" />
   <property name="log.colorPattern" value="%magenta(%d{yyyy-MM-dd HH:mm:ss}) %highlight(%-5level) %boldCyan([${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %yellow(%thread) %green(%logger) %msg%n"/>
   <property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss} %-5level [${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}] %thread %logger %msg%n"/>
   <!-- %m输出的信息,%p日志级别,%t线程名,%d日期,%c类的全名,%i索引【从数字0开始递增】,,, -->
   <!-- appender是configuration的子节点,是负责写日志的组件。 -->
   <!-- ConsoleAppender:把日志输出到控制台 -->
   <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
      <encoder>
         <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
         <!-- 控制台也要使用UTF-8,不要使用GBK,否则会中文乱码 -->
         <charset>UTF-8</charset>
      </encoder>
   </appender>

   <!-- 时间滚动输出 level为 DEBUG 日志 -->
   <appender name="DEBUG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\debug/log_debug.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 日志归档 -->
         <fileNamePattern>${log.path}/debug/log-debug-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录debug级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>debug</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 INFO 日志 -->
   <appender name="INFO_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\info/log_info.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset>
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 每天日志归档路径以及格式 -->
         <fileNamePattern>${log.path}/info/log-info-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录info级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>info</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 WARN 日志 -->
   <appender name="WARN_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\warn/log_warn.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/warn/log-warn-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录warn级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>warn</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!-- RollingFileAppender:滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 -->
   <!--             2.如果日期没有发生变化,但是当前日志的文件大小超过1KB时,对当前日志进行分割 重命名-->
   <!-- 时间滚动输出 level为 ERROR 日志 -->
   <appender name="ERROR_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\error/log_error.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/error/log-error-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录ERROR级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>ERROR</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!--开发环境:打印控制台-->
   <!-- 指定项目中某个包,当有日志操作行为时的日志记录级别 -->
   <!-- com.dimples.springboot.biz为业务逻辑根包,也就是只要是发生在这个根包下面的所有日志操作行为的权限都是DEBUG -->
   <!-- 级别依次为【从高到低】:FATAL > ERROR > WARN > INFO > DEBUG > TRACE  -->
   <springProfile name="dev">
      <logger name="com.dimples.springboot.biz" level="debug" />
   </springProfile>
   <!-- 控制台输出日志级别 -->
   <root level="info">
      <appender-ref ref="CONSOLE" />
      <appender-ref ref="DEBUG_FILE" />
      <appender-ref ref="INFO_FILE" />
      <appender-ref ref="WARN_FILE" />
      <appender-ref ref="ERROR_FILE" />
   </root>

   <!--生产环境:输出到文件-->
   <!--<springProfile name="pro">-->
   <!--<root level="info">-->
   <!--<appender-ref ref="CONSOLE" />-->
   <!--<appender-ref ref="DEBUG_FILE" />-->
   <!--<appender-ref ref="INFO_FILE" />-->
   <!--<appender-ref ref="ERROR_FILE" />-->
   <!--<appender-ref ref="WARN_FILE" />-->
   <!--</root>-->
   <!--</springProfile>-->
</configuration>

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/install/7370.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm3:14
下一篇 2024年5月18日 pm4:45

相关推荐

  • 【后端】项目开发后端知识要点地图

    大类 明细 文档链接 平台基础 如何开发Action,理解前后端协议 如何开发Action,理解前后端协议 CDN配置及文件操作相关 OSS(CDN)配置和文件系统的一些操作 MINIO无公网访问地址下OSS的配置 MINIO无公网访问地址下OSS的配置 分库分表与自定义分表规则 分库分表与自定义分表规则 Oinone引入搜索引擎(增强模型) Oinone引入搜索引擎(增强模型) 引入搜索/增强模型Channel)常见问题解决办法 引入搜索(增强模型Channel)常见问题解决办法 框架之MessageHub(信息提示) 框架之MessageHub(信息提示) DsHint和BatchSizeHint的使用 DsHint(指定数据源)和BatchSizeHint(查询批次数量) Oinone连接外部数据源方案 Oinone连接外部数据源方案 如何自定义SQL(Mapper)语句 如何自定义SQL(Mapper)语句 IWrapper、QueryWrapper和LambdaQueryWrapper使用 IWrapper、QueryWrapper和LambdaQueryWrapper使用 如何在代码中使用自增ID、手动方式获取CODE 如何在代码中使用自增ID、手动方式获取CODE 函数之触发与定时配置和示例 函数之触发与定时配置和示例 函数之异步执行 函数之异步执行 查询时自定义排序字段和排序规则 查询时自定义排序字段和排序规则 非存储字段搜索 非存储字段搜索,适应灵活的搜索场景 枚举/二进制枚举/多值枚举 如何使用位运算的数据字典 全局首页及应用首页配置方法(homepage) 全局首页及应用首页配置方法(homepage) 缓存连接由Jedis切换为Lettuce 缓存连接由Jedis切换为Lettuce GraphQL请求:后端接口实现逻辑解析 GraphQL请求:后端接口实现逻辑解析 Nacos支持 Nacos作为注册中心 Oinone项目引入Nacos作为注册中心 Nacos作为配置中心 Oinone项目引入Nacos作为配置中心 Nacos做为注册中心调用SpringCloud服务 Nacos做为注册中心调用SpringCloud服务 分布式相关 如何构建分布式项目 Oinone如何支持构建分布式项目 构建分布式项目一些要点(dubbo日志关闭等) Oinone构建分布式项目一些注意点 信创支持 后端部署使用达梦数据库 【达梦】后端使用达梦数据库 后端部署使用PostgreSQL数据库 【PostgreSQL】后端使用PostgreSQL数据库 后端部署使用OpenGauss数据库 【OpenGauss】后端使用OpenGauss数据库 后端部署使用MSSQL数据库(SQLServer) 【MSSQL】后端部署使用MSSQL数据库(SQLServer) 东方通Web和Tomcat部署Oinone项目 东方通Web和Tomcat部署Oinone项目 常见扩展 如何增加用户中心的菜单 如何增加用户中心的菜单 导入导出 如何批量导入 如何批量导入 如何支持多Excel多个Sheet导入功能 如何支持多Excel多个Sheet导入功能 如何自定义Excel导入功能 如何自定义Excel导入功能 如何自定义Excel导出功能 如何自定义Excel导出功能 如何自定义表达式 如何自定义表达式 登录扩展 对接外部SSO Oinone登录扩展:对接SSO(4.7.8及之后的版本) 自定义占位符 自定义RSQL占位符及在权限中使用 自定义RSQL占位符(placeholder)及在权限中使用 自定义数据权限拦截处理 自定义数据权限拦截处理 设计器公共 后端无代码设计器Jar包启动方法 后端无代码设计器Jar包启动方法 界面设计器 页面跳转时增加跳转参数 页面跳转时增加跳转参数 界面设计器的导入导出 界面设计器的导入导出 流程设计器 项目中工作流引入和流程触发 项目中工作流引入和流程触发 流程扩展自定义函数示例代码汇总 工作流-流程扩展自定义函数示例代码汇总 工作流-流程代办等页面自定义 工作流-流程代办等页面自定义 审核撤回/回退/拒绝钩子使用 工作流审核撤回/回退/拒绝钩子使用 流程设计器的导入导出 流程设计器的导入导出 如何添加工作流运行时依赖 如何添加工作流运行时依赖 数据可视化 项目中图表设计器引入 数据可视化-项目中数据可视化的实现引入 自定义图表模版 数据可视化中图表的低无一体 图表设计器数据获取示例 数据可视化-数据可视化数据获取示例 如何添加数据可视化运行时依赖 如何添加数据可视化运行时依赖 图表设计器的设计数据导入导出 图表设计器的设计数据导入导出

    2024年5月21日
    1.9K00
  • 函数之触发与定时配置和示例

    异步任务总体介绍 函数的触发和定时在很多场景中会用到,也是一个oinone的基础能力。比如我们的流程产品中在定义流程触发时就会让用户选择模型触发还是时间触发,就是用到了函数的触发与定时能力。 触发任务TriggerTaskAction 触发任务的创建,使用sql-record模块监听mysql的binlog事件,通过rocketmq发送变更数据消息,收到MQ消息后,创建TriggerAutoTask。 触发任务的执行,使用TBSchedule拉取触发任务后,执行相应函数。 项目中引入依赖 1、项目的API工程引入依赖pamirs-core-trigger模块 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-api</artifactId> </dependency> 2、DemoModule在模块依赖定义中增加@Module(dependencies={TriggerModule.MODULE_MODULE}) @Component @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, UserModule.MODULE_MODULE, TriggerModule.MODULE_MODULE} ) @Module.module(DemoModule.MODULE_MODULE) @Module.Advanced(selfBuilt = true, application = true) @UxHomepage(PetShopProxy.MODEL_MODEL) public class DemoModule implements PamirsModule { ……其他代码 } 3、项目的boot工程引入依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> yml文件修改(applcation-xxx.yml) a. 修改pamris.event.enabled和pamris.event.schedule.enabled为trueb. pamirs_boot_modules增加启动模块:trigger、sql_record pamirs: record: sql: #改成自己路径 store: /opt/pamirs/logs … event: enabled: true schedule: enabled: true rocket-mq: namesrv-addr: 127.0.0.1:9876 boot: init: true sync: true modules: – base -…… – trigger – sql_record -…… 新建触发任务 新建PetTalentTrigger类,当PetTalent模型的数据记录被新建时触发系统做一些事情 package pro.shushi.pamirs.demo.core.trigger; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.trigger.annotation.Trigger; import pro.shushi.pamirs.trigger.enmu.TriggerConditionEnum; @Fun(PetTalent.MODEL_MODEL) @Slf4j public class PetTalentTrigger { @Function @Trigger(displayName = “PetTalent创建时触发”,name = “PetTalent#Trigger#onCreate”,condition = TriggerConditionEnum.ON_CREATE) public PetTalent onCreate(PetTalent data){ log.info(data.getName() + “,被创建”); //可以增加逻辑 return data; } } 定时任务 定时任务是一种非常常见的模式,这里就不介绍概念了,直接进入示例环节 新建PetTalentAutoTask实现ScheduleAction getInterfaceName()需要跟taskAction.setExecuteNamespace定义保持一致,都是函数的命名空间 taskAction.setExecuteFun("execute");跟执行函数名“execute”一致 TaskType需配置为CYCLE_SCHEDULE_NO_TRANSACTION_TASK,把定时任务的schedule线程分开,要不然有一个时间长的任务会导致普通异步或触发任务全部延时。 package pro.shushi.pamirs.demo.core.task; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.enmu.TimeUnitEnum; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.fun.FunctionDefinition; import pro.shushi.pamirs.middleware.schedule.api.ScheduleAction; import pro.shushi.pamirs.middleware.schedule.common.Result; import pro.shushi.pamirs.middleware.schedule.domain.ScheduleItem; import pro.shushi.pamirs.middleware.schedule.eunmeration.TaskType; import pro.shushi.pamirs.trigger.enmu.TriggerTimeAnchorEnum; import pro.shushi.pamirs.trigger.model.ScheduleTaskAction; import pro.shushi.pamirs.trigger.service.ScheduleTaskActionService; @Slf4j @Component @Fun(PetTalent.MODEL_MODEL) public class PetTalentAutoTask implements…

    2024年5月25日
    1.3K00
  • 【OpenGauss】后端部署使用OpenGauss高斯数据库

    Gauss数据库配置 适配版本 4.7.8.3之后的版本 配置步骤 Maven配置 去华为官网下周驱动包:gsjdbc4.jar;https://support.huaweicloud.com/mgtg-dws/dws_01_0032.html <dependency> <groupId>org.postgresql</groupId> <artifactId>gsjdbc</artifactId> <version>4</version> <scope>system</scope> <!– 下面两种方式都可以–> <systemPath>${pom.basedir}/libs/gsjdbc4.jar</systemPath> <!–<systemPath>/Users/wangxian/java-tools/guassdb/gsjdbc4.jar</systemPath>–> </dependency> 导入 scope 为 system 的包,spring 编译插件需要增加 includeSystemScope: true 配置。 <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <includeSystemScope>true</includeSystemScope> </configuration> <executions> <execution> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> JDBC连接配置 pamirs: datasource: pamirs: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo_base username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 点击查看官方文档:官方文档 url格式 jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema} 在pamirs连接配置时,${database}和${schema}必须完整配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: GaussDB version: 5 majorVersion: 5.0.1 pamirs: type: GaussDB version: 5 majorVersion: 5.0.1 数据库版本 type version majorVersion 5.x GaussDB 5 5.0.1 PS:由于方言开发环境为5.0.1版本,其他类似版本(5.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: GaussDB version: 5 major-version: 5.0.1 type version majorVersion GaussDB 5 5.0.1 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Gauss数据库用户初始化及授权 — init root…

    2024年3月27日
    2.1K00
  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    1.8K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00

Leave a Reply

登录后才能评论