平台配置日志输出和推送到APM与LogStash

场景描述

目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能:

  • 日志输出到特定目录的特定文件名中
  • 指定以日志保留策略(单个文件大小和文件保留个数)
  • 日志输出到APM工具中(如skywalking)
  • 日志推送到LogStash

日志自定义输出

不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式):

方式一

bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如:

logging:
  config: classpath:logback-pre.xml

方式二

resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。

日志自定义场景

配置日志推送到LogStash

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

skywalking的日志rpc上传

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

完整的代码示例

  • Logback自定义字段
package pro.shushi.pamirs.demo.core.config;

import ch.qos.logback.classic.Level;
import ch.qos.logback.classic.Logger;
import ch.qos.logback.classic.LoggerContext;
import ch.qos.logback.classic.spi.LoggerContextListener;
import ch.qos.logback.core.Context;
import ch.qos.logback.core.spi.ContextAwareBase;
import ch.qos.logback.core.spi.LifeCycle;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
 *  Logback自定义字段
 *
 * @author wx@shushi.pro
 * @date 2024/4/17
 */
public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle {

    private boolean started = false;

    @Override
    public boolean isResetResistant() {
        return false;
    }

    @Override
    public void onStart(LoggerContext loggerContext) {
    }

    @Override
    public void onReset(LoggerContext loggerContext) {
    }

    @Override
    public void onStop(LoggerContext loggerContext) {
    }

    @Override
    public void onLevelChange(Logger logger, Level level) {
    }

    @Override
    public void start() {
        if (started) {
            return;
        }
        Context context = getContext();
        // 机器名称
        context.putProperty("server.name", getHostName());
        // 机器IP地址
        context.putProperty("ip", getHostAddress());
        started = true;
    }

    @Override
    public void stop() {
    }

    @Override
    public boolean isStarted() {
        return false;
    }

    private String getHostName() {
        try {
            return InetAddress.getLocalHost().getHostName();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }

    private String getHostAddress() {
        try {
            return InetAddress.getLocalHost().getHostAddress();
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return "";
    }
}
  • logback-dev.xml完整内容
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <!-- 日志输出格式 -->
    <property name="CONSOLE_LOG_PATTERN" value="%d |-%p [%tid] %class:%line - %m%n"/>

    <!-- 控制台日志 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!-- 文件日志 -->
    <appender name="fileLogger"
              class="ch.qos.logback.core.rolling.RollingFileAppender">
        <File>/Users/wangxian/logs/pamirs-demo.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <fileNamePattern>/Users/wangxian/logs/pamirs-demo-%d-%i.log</fileNamePattern>
            <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
                <!-- 日志文件的最多存储64MB -->
                <maxFileSize>500MB</maxFileSize>
            </timeBasedFileNamingAndTriggeringPolicy>
           <!--日志文件保留天数-->
            <maxHistory>15</maxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                <pattern>${CONSOLE_LOG_PATTERN}</pattern><!-- 此处设置输出格式 -->
            </layout>
            <charset>UTF-8</charset> <!-- 此处设置字符集 -->
        </encoder>
    </appender>

    <!--配置日志推送到LogStash-->
    <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/>
    <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>127.0.0.1:4560</destination>
        <!-- encoder必须配置,有多种可选 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <!--  SkyWalking插件, log加tid-->
            <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" />
            <!--在生成的json中会加这些字段-->
            <customFields>
                {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"}
            </customFields>
            <timeZone>Asia/Shanghai</timeZone>
            <writeVersionAsInteger>true</writeVersionAsInteger>
            <providers>
                <pattern>
                    <pattern>
                        <!--动态的变量-->
                        {
                        "ip": "%{ip}",
                        "server.name": "%{server.name}",
                        "logger_name": "%logger"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>

    <!-- skywalking的日志rpc上传 -->
    <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
            </layout>
        </encoder>
    </appender>

    <root level="INFO">
        <appender-ref ref="STDOUT"/>
        <appender-ref ref="LogStash"/>
        <appender-ref ref="SkyWalkingLogs"/>
    </root>

    <!-- Nacos的心跳检测日志级别设置 (会自动继承root 的appender) -->
    <logger name="com.alibaba" level="ERROR">
    </logger>
    <!-- xxl-job心跳检查日志级别 -->
    <logger name="com.xxl.job.core.thread" level="ERROR"/>
</configuration>
  • 分为debug、info、warn、error四种类型的日志信息,分别保存到此四个文件夹中,并按大小和日期进行归档
<?xml version="1.0" encoding="UTF-8"?>
<!-- 日志级别从低到高分为TRACE < DEBUG < INFO < WARN < ERROR < FATAL,如果设置为WARN,则低于WARN的信息都不会输出 -->

<!-- 根节点<configuration>,包含下面三个属性:-->
<!-- scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!-- scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!-- debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration>
   <contextName>dimples-logback</contextName>
   <!-- name的值是变量的名称,value的值时变量定义的值。通过定义的值会被插入到logger上下文中。定义变量后,可以使“${}”来使用变量。 -->
   <property name="log.path" value="C:/springboot-log/logs" />

   <!-- 彩色日志 -->
   <!-- 彩色日志依赖的渲染类 -->
   <conversionRule conversionWord="clr"
      converterClass="org.springframework.boot.logging.logback.ColorConverter" />
   <conversionRule conversionWord="wex"
      converterClass="org.springframework.boot.logging.logback.WhitespaceThrowableProxyConverter" />
   <conversionRule conversionWord="wEx"
      converterClass="org.springframework.boot.logging.logback.ExtendedWhitespaceThrowableProxyConverter" />
   <!-- 彩色日志格式 -->
   <property name="CONSOLE_LOG_PATTERN"
      value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}" />
   <property name="log.colorPattern" value="%magenta(%d{yyyy-MM-dd HH:mm:ss}) %highlight(%-5level) %boldCyan([${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}]) %yellow(%thread) %green(%logger) %msg%n"/>
   <property name="log.pattern" value="%d{yyyy-MM-dd HH:mm:ss} %-5level [${springAppName:-},%X{X-B3-TraceId:-},%X{X-B3-SpanId:-},%X{X-Span-Export:-}] %thread %logger %msg%n"/>
   <!-- %m输出的信息,%p日志级别,%t线程名,%d日期,%c类的全名,%i索引【从数字0开始递增】,,, -->
   <!-- appender是configuration的子节点,是负责写日志的组件。 -->
   <!-- ConsoleAppender:把日志输出到控制台 -->
   <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
      <encoder>
         <Pattern>${CONSOLE_LOG_PATTERN}</Pattern>
         <!-- 控制台也要使用UTF-8,不要使用GBK,否则会中文乱码 -->
         <charset>UTF-8</charset>
      </encoder>
   </appender>

   <!-- 时间滚动输出 level为 DEBUG 日志 -->
   <appender name="DEBUG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\debug/log_debug.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 日志归档 -->
         <fileNamePattern>${log.path}/debug/log-debug-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录debug级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>debug</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 INFO 日志 -->
   <appender name="INFO_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\info/log_info.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset>
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <!-- 每天日志归档路径以及格式 -->
         <fileNamePattern>${log.path}/info/log-info-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>15</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录info级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>info</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>

   <!-- 时间滚动输出 level为 WARN 日志 -->
   <appender name="WARN_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\warn/log_warn.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/warn/log-warn-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录warn级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>warn</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!-- RollingFileAppender:滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 -->
   <!--             2.如果日期没有发生变化,但是当前日志的文件大小超过1KB时,对当前日志进行分割 重命名-->
   <!-- 时间滚动输出 level为 ERROR 日志 -->
   <appender name="ERROR_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
      <!-- 正在记录的日志文件的路径及文件名 -->
      <file>${log.path}\error/log_error.log</file>
      <!--日志信息输出格式-->
      <encoder>
         <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
         <charset>UTF-8</charset> <!-- 此处设置字符集 -->
      </encoder>
      <!-- 日志记录器的滚动策略,按日期,按大小记录 -->
      <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
         <fileNamePattern>${log.path}/error/log-error-%d{yyyy-MM-dd-HH}.%i.log</fileNamePattern>
         <timeBasedFileNamingAndTriggeringPolicy
            class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
            <maxFileSize>100MB</maxFileSize>
         </timeBasedFileNamingAndTriggeringPolicy>
         <!--日志文件保留天数-->
         <maxHistory>30</maxHistory>
      </rollingPolicy>
      <!-- 此日志文件只记录ERROR级别的 -->
      <filter class="ch.qos.logback.classic.filter.LevelFilter">
         <level>ERROR</level>
         <onMatch>ACCEPT</onMatch>
         <onMismatch>DENY</onMismatch>
      </filter>
   </appender>
   <!--开发环境:打印控制台-->
   <!-- 指定项目中某个包,当有日志操作行为时的日志记录级别 -->
   <!-- com.dimples.springboot.biz为业务逻辑根包,也就是只要是发生在这个根包下面的所有日志操作行为的权限都是DEBUG -->
   <!-- 级别依次为【从高到低】:FATAL > ERROR > WARN > INFO > DEBUG > TRACE  -->
   <springProfile name="dev">
      <logger name="com.dimples.springboot.biz" level="debug" />
   </springProfile>
   <!-- 控制台输出日志级别 -->
   <root level="info">
      <appender-ref ref="CONSOLE" />
      <appender-ref ref="DEBUG_FILE" />
      <appender-ref ref="INFO_FILE" />
      <appender-ref ref="WARN_FILE" />
      <appender-ref ref="ERROR_FILE" />
   </root>

   <!--生产环境:输出到文件-->
   <!--<springProfile name="pro">-->
   <!--<root level="info">-->
   <!--<appender-ref ref="CONSOLE" />-->
   <!--<appender-ref ref="DEBUG_FILE" />-->
   <!--<appender-ref ref="INFO_FILE" />-->
   <!--<appender-ref ref="ERROR_FILE" />-->
   <!--<appender-ref ref="WARN_FILE" />-->
   <!--</root>-->
   <!--</springProfile>-->
</configuration>

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/install/7370.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm3:14
下一篇 2024年5月18日 pm4:45

相关推荐

  • Docker部署常见问题

    问题1:容器启动出现library initialization failed – unable to allocate file descriptor table – out of memory异常如何处理? 原因 不同操作系统安装Docker后,容器运行环境并不一致,需要对Docker运行参数进行调整。 解决方案 编辑/etc/systemd/system/docker.service文件, 有些系统该文件位置:/lib/systemd/system/docker.service 查看docker的systemd(docker.service)配置位置 systemctl status docker 查看docker的systemd配置位置 将下列参数进行修改 LimitNOFILE=65535 LimitNPROC=65535 LimitCORE=65535 执行以下脚本 systemctl daemon-reload systemctl restart docker 问题2:容器启动出现library initialization failed – unable to allocate file descriptor table – out of memorypanic: signal: aborted (core dumped)异常如何处理? 问题现象 1、 按照【问题1】的设置进行配置后,仍然不生效; 2、 尝试修改宿主机系统内核的ulimits,重启docker仍报错。修改docker.service(文件位置:/etc/systemd/system/docker.service文件, 有些系统该文件位置:/lib/systemd/system/docker.service) 解决方案 查看docker的systemd(docker.service)配置位置【问题1】中的办法 在ExecStart命令后加上创建容器的默认ulimit配置,如下,设置容器启动时的ulimit为65535:65535 –default-ulimit nofile=65535:65535 配置好后: ExecStart=/usr/bin/dockerd -H fd:// –containerd=/run/containerd/containerd.sock –default-ulimit nofile=65535:65535 执行以下脚本 systemctl daemon-reload systemctl restart docker 资料参考:https://blog.csdn.net/weixin_42241322/article/details/137122868 问题3:拉取设计器镜像报错 报错信息,拉取镜像harbor.oinone.top连不上。 docker login –username=schhsw_oinone harbor.oinone.top i Info → A Personal Access Token (PAT) can be used instead. To create a PAT, visit https://app.docker.com/settings Password: time="2025-02-27T11:24:58+08:00" level=info msg="Error logging in to endpoint, trying next endpoint" error="Get \"https://harbor.oinone.top/v2/\": dial tcp 0.0.0.0:443: connect: connection refused" Get "https://harbor.oinone.top/v2/": dial tcp 0.0.0.0:443: connect: connection refused kfpt@kfpt-virtual-machine:~$ sudo -i root@kfpt-virtual-machine:~# docker login –username=schhsw_oinone harbor.oinone.top i Info → A Personal Access Token (PAT) can be used instead. To create a PAT, visit https://app.docker.com/settings Password: Error response from daemon: Get "https://harbor.oinone.top/v2/": dial tcp 0.0.0.0:443: connect: connection refused 排查过程: 排除到后面发现原因是DNS配置的问题,换了一个阿里云的IP就可以了

    2025年3月13日
    65500
  • 工作流审核撤回/回退/拒绝钩子使用

    目录 1. 流程撤回、拒绝和回退调用自定义函数1.1 工作流【撤销】回调钩子1.2 撤销【回退】回调钩子1.3 工作流【拒绝】回调钩子1.4 回调钩子在业务系统中的调用示例2. 自定义审批方式、自定义审批节点名称 1.流程撤回、拒绝和回退调用自定义函数 1.1工作流【撤销】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:当流程实例被撤销时调用入口:pro.shushi.pamirs.workflow.app.core.service.impl.WorkflowInstanceServiceImpl#undoInstance /** * XXX为当前流程触发方式为模型触发时对应的触发模型、 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX recall(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.2撤销【回退】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行回退操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX fallBack(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.3工作流【拒绝】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行拒绝操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX reject(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.4回调钩子在业务系统中的调用示例 @Function(summary = "发起的流程撤销时会自动调用此方法") @Function.Advanced(displayName = "撤销流程") public PurchaseProjectProxy recall(String data) { Object tempObj = BeanDefinitionUtils.findFirst(ClientDataConverter.class).out(PurchaseProjectProxy.MODEL_MODEL, JsonUtils.parseMap(data)); PurchaseProjectProxy proxy = BeanDefinitionUtils.getBean(ClientDataConverter.class) .<PurchaseProjectProxy>in(new ModelComputeContext(), PurchaseProjectProxy.MODEL_MODEL, tempObj); PurchaseProject purchaseProject = service.recall(ArgUtils.convert(PurchaseProjectProxy.MODEL_MODEL, PurchaseProject.MODEL_MODEL, proxy)); return ArgUtils.convert(PurchaseProject.MODEL_MODEL, PurchaseProjectProxy.MODEL_MODEL, purchaseProject); } 2.自定义审批方式、自定义审批节点名称 【注意】 流程自定义函数需指定:category = FunctionCategoryEnum.CUSTOM_DESIGNER @Model.model(审批模型.MODEL_MODEL) @Component public class 审批模型Action { /** * 自定义审批方式 * @param json json为业务数据,可用JsonUtils转换 * @return 返回参数: * COUNTERSIGN_ONEAGREE_ONEREJUST 或签(一名审批人同意或拒绝即可) * COUNTERSIGN_ALLAGREE_ONEREJUST 会签(需所有审批人同意才为同意,一名审批人拒绝即为拒绝)…

    2023年11月15日
    94400
  • Oinone环境保护(v5.2.3以上)

    概述 Oinone平台为合作伙伴提供了环境保护功能,以确保在一套环境可以在较为安全前提下修改配置文件,启动多个JVM等部署操作。 本章内容主要介绍与环境保护功能相关的启动参数。 名词解释 本地开发环境:开发人员在本地启动业务工程的环境 公共环境:包含设计器镜像和业务工程的环境 环境保护参数介绍 -PenvProtected=${value} 是否启用环境保护,默认为true。 环境保护是通过与最近一次保存在数据库的base_platform_environment表中数据进行比对,并根据每个参数的配置特性进行判断,在启动时将有错误的内容打印在启动日志中,以便于开发者进行问题排查。 除此之外,环境保护功能还提供了一些生产配置的优化建议,开发者可以在启动时关注这些日志,从而对生产环境的配置进行调优。 -PsaveEnvironments=${value} 是否将此次启动的环境参数保存到数据库,默认为true。 在某些特殊情况下,为了避免公共环境中的保护参数发生不必要的变化,我们可以选择不保存此次启动时的配置参数到数据库中,这样就不会影响其他JVM启动时发生校验失败而无法启动的问题。 -PstrictProtected=${value} 是否使用严格校验模式,默认为false 通常我们建议在公共环境启用严格校验模式,这样可以最大程度的保护公共环境的元数据不受其他环境干扰。 PS:在启用严格校验模式时,需避免内外网使用不同连接地址的场景。如无法避免,则无法启用严格校验模式。 常见问题 需要迁移数据库,并更换了数据库连接地址该如何操作? 将原有数据库迁移到新数据库。 修改配置文件中数据库的连接地址。 在启动脚本中增加-PenvProtected=false关闭环境保护。 启动JVM服务可以看到有错误的日志提示,但不会中断本次启动。 移除启动脚本中的-PenvProtected=false或将值改为true,下次启动时将继续进行环境保护检查。 可查看数据库中base_platform_environment表中对应数据库连接配置已发生修改,此时若其他JVM在启动前未正确修改,则无法启动。 本地开发时需要修改Redis连接地址到本地,但希望不影响公共环境的使用该如何操作? PS:由于Redis中的元数据缓存是根据数据库差量进行同步的,此操作会导致公共环境在启动时无法正确刷新Redis中的元数据缓存,需要配合pamirs.distribution.session.allMetaRefresh参数进行操作。如无特殊必要,我们不建议使用该形式进行协同开发,多次修改配置会导致出错的概率增加。 本地环境首次启动时,除了修改Redis相关配置外,还需要配置pamirs.distribution.session.allMetaRefresh=true,将本地新连接的Redis进行初始化。 在本地启动时,增加-PenvProtected=false -PsaveEnvironments=false启动参数,以确保本地启动不会修改公共环境的配置,并且可以正常通过环境保护检测。 本地环境成功启动并正常开发功能后,需要发布到公共环境进行测试时,需要先修改公共环境中业务工程配置pamirs.distribution.session.allMetaRefresh=true后,再启动业务工程。 启动一次业务工程后,将配置还原为pamirs.distribution.session.allMetaRefresh=false。

    2024年10月21日
    83600
  • Excel导入导出模板翻译

    导出翻译项 与翻译的导出全部翻译项类似,只是该操作目前没有加入到页面交互中,需要通过工具发起后端服务请求,拿到导入导出翻译Excel模版,添加模版翻译项。(查看路径:文件–导出任务) mutation { excelExportTaskMutation { createExportTask( data: { workbookDefinition: { model: "file.ExcelWorkbookDefinition" name: "excelLocationTemplate" } } ) { name } } } variables: { "path": "/file", "lang": "en-US" } 参数说明:(不在以下说明范围内的参数无需修改) variables.lang参数:用于指定翻译项的目标语言编码,与【资源】-【语言】中的编码一致。 导入翻译项 mutation { excelImportTaskMutation { createImportTask( data: { workbookDefinition: { model: "file.ExcelWorkbookDefinition" name: "excelLocationTemplate" } file: { url: "翻译项URL链接" } } ) { name } } } variables: { "path": "/file" } 参数说明: 将翻译项URL链接改为实际可访问的文件链接即可,可通过页面中任意文件上传的组件获取。

    2024年12月5日
    60400
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.0K00

Leave a Reply

登录后才能评论