DsHint(指定数据源)和BatchSizeHint(指定批次数量)

概述和使用场景

  • DsHintApi ,强制指定数据源,
  • BatchSizeHintApi ,强制指定查询批量数量

API定义

DsHintApi

    public static DsHintApi model(String model/**模型编码*/) {
     // 具体实现
    }

    public DsHintApi(Object dsKey/***数据源名称*/) {
         // 具体实现
    }

BatchSizeHintApi

   public static BatchSizeHintApi use(Integer batchSize) {
     // 具体实现
    }

使用示例

  • 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱

  • 2、DsHintApi使用示例
    包裹在try里面的所有查询都会强制使用指定的数据源

    // 使用方式1:
    try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) {
       List<PetItem> items = demoItemDAO.customSqlDemoItem();
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
    
    // 使用方式2:
    try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) {
        List<PetItem> items = demoItemDAO.customSqlDemoItem();
        PetShopProxy data2 = data.queryById();
        data2.fieldQuery(PetShopProxy::getPetTalents);
    }
  • 3、BatchSizeHintApi使用示例
    包裹在try里面的所有查询都会按照指定的batchSize进行查询

    // 查询指定每次查询500跳
    try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
//  查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询
 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
 }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7376.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm4:07
下一篇 2024年5月20日 pm9:04

相关推荐

  • 如何在代码中使用自增ID和获取序列

    在使用继承IDModel或CodeModel时,id和code是系统默认自动生成, 默认值规则:ID–>分布式ID; CODE–>根据定义的SequenceConfig规则自动生成。 在特定情况下需要落库前先生成ID或者Code,这些场景下可参照如下代码示例 一、使用自增ID 单个字段设置方式 // 主键字段,可以使用mysql的自增能力 @Field.Integer @Field.PrimaryKey(keyGenerator = KeyGeneratorEnum.AUTO_INCREMENT) @Field.Advanced(batchStrategy = FieldStrategyEnum.NEVER) @Field(displayName = "id", summary = "Id字段,⾃增") private Long id; @Field.Integer @Field(displayName = "自增版本") @Field.Sequence(sequence = "SEQ", initial = 1) private Long version; 全局设置方式 该方式会作用到每一个存储模型的id字段,在application.yml配置文件中修改id的生成规则,查找配置项关键字key-generator,默认为DISTRIBUTION(分布式id),可修改为 AUTO_INCREMENT(自增id) 二、手动方式获取序列 获取方式示例1 /** * 在特定场景下需要手动生成Id或者code时,可参照这个示例 */ public void manualSetIdCode(){ DemoItem demoItem = new DemoItem(); //手动生成ID和code Object idObj = Spider.getDefaultExtension(IdGenerator.class).generate(PamirsTableInfo.fetchKeyGenerator(DemoItem.MODEL_MODEL)); demoItem.setId(TypeUtils.createLong(idObj)); Object codeObj = CommonApiFactory.getSequenceGenerator().generate("SEQ",DemoItem.MODEL_MODEL); String code = TypeUtils.stringValueOf(codeObj); demoItem.setCode(code); //…… } 获取方式示例2 1、在系统启动的时候初始化SequenceConfig package pro.shushi.pamirs.demo.core.init; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.demo.api.DemoModule; import pro.shushi.pamirs.demo.core.constant.SeqConstants; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.enmu.SequenceEnum; import java.util.Map; /** * DemoMetadataEditor */ @Slf4j @Component public class DemoMetadataEditor implements MetaDataEditor { @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { InitializationUtil util = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE, DemoModule.MODULE_NAME); if (util == null) { log.error("获取初始化序列失败"); return; } bizSequence(util); } private void bizSequence(InitializationUtil util) { util.createSequenceConfig("申请单编码生成", SeqConstants.NABEL_SAMPLE_APPLY_SEQ, SequenceEnum.ORDERLY_SEQ, 8) .setStep(1) .setInitial(80000000L) .setIsRandomStep(false); util.createSequenceConfig("订单编码生成", SeqConstants.NABEL_SAMPLE_ORDER_SEQ_YP, SequenceEnum.ORDERLY_SEQ, 8) .setPrefix("YP") .setStep(1) .setInitial(80000000L) .setIsRandomStep(false); } } 2、在代码中使用序列 public static String getSaleOrderCode() { Object sequence = CommonApiFactory.getSequenceGenerator().generate(SequenceEnum.ORDERLY_SEQ.value(), SeqConstants.NABEL_SAMPLE_STRUCTURE_SEQ); return TypeUtils.stringValueOf(sequence); } public static String getApplyOrderCode(String prefix) { Object sequence = CommonApiFactory.getSequenceGenerator().generate(SequenceEnum.ORDERLY_SEQ.value(), SeqConstants.NABEL_SAMPLE_APPLY_SEQ); return…

    2024年5月25日
    1.8K00
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.7K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    94200
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.6K00
  • Oinone项目引入Nacos作为注册中心

    Oinone项目引入Nacos作为注册中心 Oinone项目的默认dubbo注册中心为zk, 实际项目中有可能要求用Nacos作注册中心。 Oinone默认引入的nacos-client-1.4.1,低版本不支持认证配置;该客户端版本支持Nacos服务1.x的和2.x的版本 一、项目中增加依赖 项目主pom引入依赖。 <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-registry-nacos</artifactId> <version>2.7.22</version> </dependency> 项目的boot工程的pom引入依赖 <dependency> <groupId>org.apache.dubbo</groupId> <artifactId>dubbo-registry-nacos</artifactId> </dependency> 二、配置修改 修改dubbo服务注册到nacos bootstrap.yml文件的配置,或者application.yml文件中修改dubbo的配置 dubbo: application: name: pamirs-demo version: 1.0.0 registry: id: pamirs-demo-registry address: nacos://192.168.0.118:8848 username: nacos # 认证的用户名(根据情况自行修改),未开启认证可以不需要配置username和password password: nacos # 认证的密码(根据情况自行修改),未开启认证可以不需要配置username和password # dubbo使用nacos的注册中心往配置中心写入配置关闭配置 use-as-metadata-center: false use-as-config-center: false config-center: address: nacos://192.168.0.118:8848 username: nacos # 认证的用户名(根据情况自行修改),未开启认证可以不需要配置username和password password: nacos # 认证的密码(根据情况自行修改),未开启认证可以不需要配置username和password metadata-report: failfast: false # 关闭错误上报的功能 address: nacos://192.168.0.118:8848 username: nacos # 认证的用户名(根据情况自行修改),未开启认证可以不需要配置username和password password: nacos # 认证的密码(根据情况自行修改),未开启认证可以不需要配置username和password protocol: name: dubbo port: -1 serialization: pamirs scan: base-packages: pro.shushi cloud: subscribed-services: 其他 Oinone构建分布式项目一些注意点,包括服务远程发布范围、关闭Dubbo元数据上报日志、Nacos作为注册中的配置 Nacos做为注册中心:如何调用其他系统的SpringCloud服务?

    2024年2月28日
    1.4K00

Leave a Reply

登录后才能评论