DsHint(指定数据源)和BatchSizeHint(指定批次数量)

概述和使用场景

  • DsHintApi ,强制指定数据源,
  • BatchSizeHintApi ,强制指定查询批量数量

API定义

DsHintApi

    public static DsHintApi model(String model/**模型编码*/) {
     // 具体实现
    }

    public DsHintApi(Object dsKey/***数据源名称*/) {
         // 具体实现
    }

BatchSizeHintApi

   public static BatchSizeHintApi use(Integer batchSize) {
     // 具体实现
    }

使用示例

  • 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱

  • 2、DsHintApi使用示例
    包裹在try里面的所有查询都会强制使用指定的数据源

    // 使用方式1:
    try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) {
       List<PetItem> items = demoItemDAO.customSqlDemoItem();
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
    
    // 使用方式2:
    try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) {
        List<PetItem> items = demoItemDAO.customSqlDemoItem();
        PetShopProxy data2 = data.queryById();
        data2.fieldQuery(PetShopProxy::getPetTalents);
    }
  • 3、BatchSizeHintApi使用示例
    包裹在try里面的所有查询都会按照指定的batchSize进行查询

    // 查询指定每次查询500跳
    try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
//  查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询
 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
 }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7376.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm4:07
下一篇 2024年5月20日 pm9:04

相关推荐

  • 如何选择适合的模型类型?

    介绍 通过Oinone 7天从入门到精通的模型的类型章节我们可以知道模型有抽象模型、存储模型、代理模型、传输模型这四种。但是在在定义模型的时候我们可能不知道该如何选择类型,下面结合业务场景为大家讲解几种模型的典型使用场景。 抽象模型 抽象模型往往是提供公共能力和字段的模型,它本身不会直接用于构建协议和基础设施(如表结构等)。 场景:猫、鸟都继承自动物这个抽象模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.sys.Base; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Base @Model.model(AbstractAnimal.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.ABSTRACT) @Model(displayName = "动物") public abstract class AbstractAnimal extends IdModel { public static final String MODEL_MODEL = "demo.AbstractAnimal"; @Field.String @Field(displayName = "名称") private String name; @Field.String @Field(displayName = "颜色") private String color; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Cat.MODEL_MODEL) @Model(displayName = "猫") public class Cat extends AbstractAnimal { private static final long serialVersionUID = -5104390780952634397L; public static final String MODEL_MODEL = "demo.Cat"; @Field.Integer @Field(displayName = "尾巴长度") private Integer tailLength; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Bird.MODEL_MODEL) @Model(displayName = "鸟") public class Bird extends AbstractAnimal { private static final long serialVersionUID = -5144390780952634397L; public static final String MODEL_MODEL = "demo.Bird"; @Field.Integer @Field(displayName = "翼展宽度") private Integer wingSpanWidth; } 存储模型 存储模型用于定义数据表结构和数据的增删改查(数据管理器)功能,是直接与连接器进行交互的数据容器。 场景:存储模型对应传统开发模式中的数据表,上面例子中的Cat和Birdd都属于传输模型,由于模型定义的注解@Model.Advanced(type = ModelTypeEnum.STORE)默认值就是存储模型,所以一般不用手动指定 代理模型 代理模型是用于代理存储模型的数据管理器能力,同时又可以扩展出非存储数据信息的交互功能的模型。 场景一:隔离数据权限 场景二:增强列表的搜索项 场景三:导入导出的时候增加其他特殊信息 场景四:重写下拉组件的查询逻辑做数据过滤 传输模型 传输模型不会在数据库生成的表,只是作为数据的传输使用,跟传统开发模式中的DTO有一点相似。 场景一:批量处理数据 场景二:处理一些跟数据表无关的操作,如:清理指定业务的缓存、查看一些系统监控信息,可以根据业务信息建立对应的传输模型,在传输模型上创建action动作 场景三:通过传输模型完成复杂页面数据传输

    2024年4月7日
    1.4K00
  • 如何自定义Excel导出功能

    介绍 在平台提供的默认导出功能无法满足业务需求的时候,我们可以自定义导出功能,以满足业务中个性化的需求。 功能示例 继承平台的导出任务模型,加上需要在导出的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导出任务") public class DemoItemExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemExportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导出弹窗视图的数据初始化方法和导出提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.file.api.action.ExcelExportTaskAction; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemExportTask.MODEL_MODEL) public class DemoItemExcelExportTaskAction extends ExcelExportTaskAction { public DemoItemExcelExportTaskAction(ExcelFileService excelFileService) { super(excelFileService); } @Action(displayName = "导出", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemExportTask createExportTask(DemoItemExportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } super.createExportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemExportTask construct(DemoItemExportTask data) { data.construct(); return data; } } 编写导出的数据处理逻辑,此处可以拿到导出弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.extpoint.ExcelExportFetchDataExtPoint; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.meta.annotation.ExtPoint; import java.util.Collections; import java.util.List; @Component public class DemoItemExportExtPoint extends ExcelExportSameQueryPageTemplate implements ExcelTemplateInit , ExcelExportFetchDataExtPoint…

    2024年1月3日
    1.2K00
  • 如何自定义SQL(Mapper)语句

    场景描述 在实际业务场景中,存在复杂SQL的情况,具体表现为: 单表单SQL满足不了的情况下 有复杂的Join关系或者子查询 复杂SQL的逻辑通过程序逻辑难以实现或实现代价较大 在此情况下,通过原生的mybatis/mybatis-plus, 自定义Mapper的方式实现业务功能 1、编写所需的Mapper SQL Mapper写法无限制,与使用原生的mybaits/mybaits-plus用法一样; Mapper(DAO)和SQL可以写在一个文件中,也分开写在两个文件中。 package pro.shushi.pamirs.demo.core.map; import org.apache.ibatis.annotations.Mapper; import org.apache.ibatis.annotations.Param; import org.apache.ibatis.annotations.Select; import java.util.List; import java.util.Map; @Mapper public interface DemoItemMapper { @Select("<script>select sum(item_price) as itemPrice,sum(inventory_quantity) as inventoryQuantity,categoryId from ${demoItemTable} as core_demo_item ${where} group by category_id</script>") List<Map<String, Object>> groupByCategoryId(@Param("demoItemTable") String pamirsUserTable, @Param("where") String where); } 2.调用mapper 调用Mapper代码示例 package pro.shushi.pamirs.demo.core.map; import com.google.api.client.util.Lists; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.framework.connectors.data.api.datasource.DsHintApi; import pro.shushi.pamirs.meta.api.core.orm.convert.DataConverter; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils; import java.util.List; import java.util.Map; @Component public class DemoItemDAO { public List<DemoItem> customSqlDemoItem(){ try (DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL)) { String demoItemTable = PamirsSession.getContext().getModelCache().get(DemoItem.MODEL_MODEL).getTable(); DemoItemMapper demoItemMapper = BeanDefinitionUtils.getBean(DemoItemMapper.class); String where = " where status = 'ACTIVE'"; List<Map<String, Object>> dataList = demoItemMapper.groupByCategoryId(demoItemTable,where); DataConverter persistenceDataConverter = BeanDefinitionUtils.getBean(DataConverter.class); return persistenceDataConverter.out(DemoItem.MODEL_MODEL, dataList); } return Lists.newArrayList(); } } 调用Mapper一些说明 启动类需要配置扫描包MapperScan @MapperScan(value = "pro.shushi", annotationClass = Mapper.class) @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, FreeMarkerAutoConfiguration.class}) public class DemoApplication { 调用Mapper接口的时候,需要指定数据源;即上述示例代码中的 DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL), 实际代码中使用 try-with-resources语法。 从Mapper返回的结果中获取数据 如果SQL Mapper中已定义了resultMap,调用Mapper(DAO)返回的就是Java对象 如果Mapper返回的是Map<String, Object>,则通过 DataConverter.out进行转化,参考上面的示例 其他参考:Oinone连接外部数据源方案:https://doc.oinone.top/backend/4562.html

    2023年11月27日
    1.5K00
  • Oinone如何支持构建分布式项目

    分布式调用下的[强制]约束 1、[强制]分布式调用情况下base库和redis需共用;2、[强制]如果环境有设计器,设计器的base库和redis保持一致也需与项目中的保持一致;3、[强制]相同base库下,不同应用的相同模块的数据源需保持一致;4、[强制]项目中需引入分布式缓存包。参考下文的分布式包依赖 分布式支持 1、分布式包依赖 1) 父pom的依赖管理中先加入pamirs-distribution的依赖 <dependency> <groupId>pro.shushi.pamirs</groupId> <artifactId>pamirs-distribution</artifactId> <version>${pamirs.distribution.version}</version> <type>pom</type> <scope>import</scope> </dependency> 2) 启动的boot工程中增加pamirs-distribution相关包 <!– 分布式服务发布 –> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-faas</artifactId> </dependency> <!– 分布式元数据缓存 –> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-session</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-gateway</artifactId> </dependency> 3)启动工程的Application中增加类注解@EnableDubbo @EnableDubbo public class XXXStdApplication { public static void main(String[] args) throws IOException { StopWatch stopWatch = new StopWatch(); stopWatch.start(); // ……………………………… log.info("XXXX Application loading…"); } } 2、修改bootstrap.yml文件 注意序列化方式:serialization: pamirs 以下只是一个示例(zk为注册中心),注册中心支持zk和Nacos;Nacos作为注册中心参考:https://doc.oinone.top/kai-fa-shi-jian/5835.html spring: profiles: active: dev application: name: pamirs-demo cloud: service-registry: auto-registration: enabled: false pamirs: default: environment-check: true tenant-check: true — spring: profiles: dev cloud: service-registry: auto-registration: enabled: false config: enabled: false uri: http://127.0.0.1:7001 label: master profile: dev nacos: server-addr: http://127.0.0.1:8848 discovery: enabled: false namespace: prefix: application file-extension: yml config: enabled: false namespace: prefix: application file-extension: yml dubbo: application: name: pamirs-demo version: 1.0.0 registry: address: zookeeper://127.0.0.1:2181 protocol: name: dubbo port: -1 serialization: pamirs scan: base-packages: pro.shushi cloud: subscribed-services: metadata-report: disabled: true 3、模块启动的最⼩集 pamirs: boot: init: true sync: true modules: – base – sequence – 业务工程的Module 4、业务模型间的依赖关系 服务调用方(即Client端),在启动yml中modules不安装服务提供方的Module 服务调用方(即Client端),项目的pom中只依赖服务提供方的API(即模型和API的定义) 服务调用方(即Client端),项目模块定义(即模型Module定义),dependencies中增加服务提供方的Modeule. 如下面示例代码中的FileModule @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, FileModule.MODULE_MODULE, SecondModule.MODULE_MODULE/**服务提供方的模块定义*/ } )…

    2024年2月20日
    1.1K00
  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    2.0K00

Leave a Reply

登录后才能评论