DsHint(指定数据源)和BatchSizeHint(指定批次数量)

概述和使用场景

  • DsHintApi ,强制指定数据源,
  • BatchSizeHintApi ,强制指定查询批量数量

API定义

DsHintApi

    public static DsHintApi model(String model/**模型编码*/) {
     // 具体实现
    }

    public DsHintApi(Object dsKey/***数据源名称*/) {
         // 具体实现
    }

BatchSizeHintApi

   public static BatchSizeHintApi use(Integer batchSize) {
     // 具体实现
    }

使用示例

  • 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱

  • 2、DsHintApi使用示例
    包裹在try里面的所有查询都会强制使用指定的数据源

    // 使用方式1:
    try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) {
       List<PetItem> items = demoItemDAO.customSqlDemoItem();
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
    
    // 使用方式2:
    try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) {
        List<PetItem> items = demoItemDAO.customSqlDemoItem();
        PetShopProxy data2 = data.queryById();
        data2.fieldQuery(PetShopProxy::getPetTalents);
    }
  • 3、BatchSizeHintApi使用示例
    包裹在try里面的所有查询都会按照指定的batchSize进行查询

    // 查询指定每次查询500跳
    try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
    }
//  查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询
 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) {
       PetShopProxy data2 = data.queryById();
       data2.fieldQuery(PetShopProxy::getPetTalents);
 }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7376.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月18日 pm4:07
下一篇 2024年5月20日 pm9:04

相关推荐

  • 如何自定义Excel导出功能

    介绍 在平台提供的默认导出功能无法满足业务需求的时候,我们可以自定义导出功能,以满足业务中个性化的需求。 功能示例 继承平台的导出任务模型,加上需要在导出的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导出任务") public class DemoItemExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemExportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导出弹窗视图的数据初始化方法和导出提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.file.api.action.ExcelExportTaskAction; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemExportTask.MODEL_MODEL) public class DemoItemExcelExportTaskAction extends ExcelExportTaskAction { public DemoItemExcelExportTaskAction(ExcelFileService excelFileService) { super(excelFileService); } @Action(displayName = "导出", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemExportTask createExportTask(DemoItemExportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } super.createExportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemExportTask construct(DemoItemExportTask data) { data.construct(); return data; } } 编写导出的数据处理逻辑,此处可以拿到导出弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.extpoint.ExcelExportFetchDataExtPoint; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.meta.annotation.ExtPoint; import java.util.Collections; import java.util.List; @Component public class DemoItemExportExtPoint extends ExcelExportSameQueryPageTemplate implements ExcelTemplateInit , ExcelExportFetchDataExtPoint…

    2024年1月3日
    1.2K00
  • 元数据表介绍

    模型 模型元数据的讲解 https://doc.oinone.top/oio4/9281.html base_model 模型表 字段名 备注 示例 system_source BASE是系统创建, MANUAL是人工创建 MANUAL pk 主键 id module 模块编码 demo_core model 模型编码 demo.PetType name api名称 petType lname 模型代码名称 pro.shushi.pamirs.demo.api.model.PetType table 逻辑数据表名称 demo_core_pet_type ds_key 逻辑数据源名 pamirs type 模型类型 store display_name 显示名称 品种 data_manager 是否允许系统根据模型变化自动创建表和更新表 1 ordering 排序 createDate DESC, id DESC super_models 父模型 demo.AbstractDemoIdModel uniques 唯一索引 indexes 索引 name,createDate 模块 模块元数据的讲解 https://doc.oinone.top/oio4/9279.html base_module 模块表 字段名 备注 示例 display_name 显示名称 OinoneDemo name api名称 DemoCore module 模块编码 demo_core module_dependencies 依赖模块编码列表 base,common,file,trigger module_exclusions 互斥模块编码列表 module_upstreams 上游模块编码列表 system_source BASE是系统创建, MANUAL是人工创建 MANUAL web web应用 1 default_home_page_model 默认主页模型编码 函数 函数元数据的讲解 https://doc.oinone.top/oio4/9282.html base_function 函数表 字段名 备注 示例 display_name 显示名称 根据条件分页查询记录列表和总数 clazz 函数位置 pro.shushi.pamirs.framework.orm.DefaultReadApi module 模块 demo_core method 函数方法 queryPage namespace 函数命名空间 demo.PetType argument_list 函数参数 [{"ltype":"pro.shushi.pamirs.meta.api.dto.condition.Pagination","model":"base.Pagination","modelGeneric":false,"multi":false,"name":"page","ttype":"m2o"},{"ltype":"pro.shushi.pamirs.meta.api.dto.wrapper.IWrapper","ltypeT":"java.lang.Object","model":"base.Condition","modelGeneric":true,"multi":false,"name":"queryWrapper","ttype":"m2o"}] fun 函数编码 queryPage return_type 返回值类型 {"ltype":"pro.shushi.pamirs.meta.api.dto.condition.Pagination","model":"base.Pagination","modelGeneric":false,"multi":false,"ttype":"m2o"} sys 由系统产生的元数据 1 type 函数类型 1: CREATE, 2: DELETE, 4: UPDATE, 8: QUERY 8 data_manager 数据管理器函数 1 codes 代码内容 open_level 开放级别 2: LOCAL, 4: REMOTE, 8: API, 6: LOCAL+REMOTE, 10: LOCAL+API, 12: REMOTE+API, 14:LOCAL+REMOTE+API 14 模型字段 字段讲解 https://doc.oinone.top/oio4/9239.html base_field 字段表 字段名 备注 示例 system_source BASE是系统创建, MANUAL是人工创建 MANUAL name api名称 name field 字段编码 name ttype 关系类型, 类型:m2o/o2m/m2m/enum/string/integer/map/datetime/related/money/html string model 模型编码…

    2024年8月23日
    1.1K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 【MSSQL】后端部署使用MSSQL数据库(SQLServer)

    MSSQL数据库配置 驱动配置 Maven配置(2017版本可用) <mssql.version>9.4.0.jre8</mssql.version> <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>mssql-jdbc</artifactId> <version>${mssql.version}</version> </dependency> 离线驱动下载 mssql-jdbc-7.4.1.jre8.jarmssql-jdbc-9.4.0.jre8.jarmssql-jdbc-12.2.0.jre8.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.microsoft.sqlserver.jdbc.SQLServerDriver url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=base username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 暂无官方资料 url格式 jdbc:sqlserver://${host}:${port};DatabaseName=${database} 在jdbc连接配置时,${database}必须配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: MSSQL version: 2017 major-version: 2017 pamirs: type: MSSQL version: 2017 major-version: 2017 数据库版本 type version majorVersion 2017 MSSQL 2017 2017 PS:由于方言开发环境为2017版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: MSSQL version: 2017 major-version: 2017 type version majorVersion MSSQL 2017 2017 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: CAST(DATEDIFF(S, CAST('1970-01-01 00:00:00' AS DATETIME), GETUTCDATE()) AS BIGINT) * 1000000 + DATEPART(NS, SYSUTCDATETIME()) / 100 MSSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE LOGIN [root] WITH PASSWORD = 'password'; — if using mssql database, this authorization is required. ALTER SERVER ROLE [sysadmin] ADD MEMBER [root];

    2024年10月18日
    1.0K00
  • 后端代码规范

    前言 虽然oinone框架减少了很多的代码,但是低代码部分的代码质量也需要高度关注,不管是写的代码bug多,或者说被吐槽代码不行,还是说写的代码经常被重构,核心点还是没有代码规范的意识和技巧,下面摘录了一些常见的规范要求,去提高后端的代码质量,代码质量提高后,自然效率也会提升。 常见代码规范 **1、规范命名** 命名是写代码中最频繁的操作,比如类、属性、方法、参数等。好的名字应当能遵循以下几点: **见名知意** 比如需要定义一个变量需要来计数 int i = 0; 名称 i 没有任何的实际意义,没有体现出数量的意思,所以我们应当指明数量的名称 int count = 0; **能够读的出来** 如下代码: private String sfzh; private String dhhm; 这些变量的名称,根本读不出来,更别说实际意义了。 所以我们可以使用正确的可以读出来的英文来命名 private String idCardNo; private String phone; **2、规范代码格式** 好的代码格式能够让人感觉看起来代码更加舒适。 好的代码格式应当遵守以下几点: 合适的空格 代码对齐,比如大括号要对齐 及时换行,一行不要写太多代码 好在现在开发工具支持一键格式化,可以帮助美化代码格式,大家统一使用idea的规范即可。 **3、写好代码注释** 在《代码整洁之道》这本书中作者提到了一个观点,注释的恰当用法是用来弥补我们在用代码表达意图时的失败。换句话说,当无法通过读代码来了解代码所表达的意思的时候,就需要用注释来说明。 书的作者之所以这么说,是因为作者觉得随着时间的推移,代码可能会变动,如果不及时更新注释,那么注释就容易产生误导,偏离代码的实际意义。而不及时更新注释的原因是,程序员不喜欢写注释。😒 但是这不意味着可以不写注释,当通过代码如果无法表达意思的时候,就需要注释,比如如下代码: for (Integer id : ids) { if (id == 0) { continue; } //做其他事 } 为什么 id == 0 需要跳过,代码是无法看出来了,就需要注释了。 好的注释应当满足一下几点: 解释代码的意图,说明为什么这么写,用来做什么 对参数和返回值注释,入参代表什么,出参代表什么 有警示作用,比如说入参不能为空,或者代码是不是有坑 当代码还未完成时可以使用 todo 注释来标记 代码review发现漏洞时 可以使用 fixme 注释来标记 **4、try catch 内部代码抽成一个方法** try catch代码有时会干扰我们阅读核心的代码逻辑,这时就可以把try catch内部主逻辑抽离成一个单独的方法 如下图是Eureka服务端源码中服务下线的实现中的一段代码 整个方法非常长,try中代码是真正的服务下线的代码实现,finally可以保证读锁最终一定可以释放。 所以这段代码其实就可以对核心的逻辑进行抽取。 protected boolean internalCancel(String appName, String id, boolean isReplication) { try { read.lock(); doInternalCancel(appName, id, isReplication); } finally { read.unlock(); } // 剩余代码 } private boolean doInternalCancel(String appName, String id, boolean isReplication) { //真正处理下线的逻辑 } **5、方法别太长** 方法别太长就是字面的意思。一旦代码太长,给人的第一眼感觉就很复杂,让人不想读下去; 同时方法太长的代码可能读起来容易让人摸不着头脑,不知道哪一些代码是同一个业务的功能。 比如代码中有那种2000+行大类,各种if else判断,光理清代码思路就需要用很久时间。🤷🏻‍♀️ 所以一旦方法过长,可以尝试将相同业务功能的代码单独抽取一个方法,最后在主方法中调用即可。 **6、抽取重复代码** 当一份代码重复出现在程序的多处地方,就会造成程序又臭又长,当这份代码的结构要修改时,每一处出现这份代码的地方都得修改,导致程序的扩展性很差。 所以一般遇到这种情况,可以抽取成一个工具类,还可以抽成一个公共的父类。 **7、多用return** 在有时我们平时写代码的情况可能会出现if条件套if的情况,当if条件过多的时候可能会出现如下情况: if (条件1) { if (条件2) { if (条件3) { if (条件4) { if (条件5) { System.out.println("11111"); } } } } } 面对这种情况,可以换种思路,使用return来优化 if (!条件1) { return; } if (!条件2) { return; } if (!条件3) { return; } if (!条件4) { return; } if (!条件5) { return; } System.out.println("11111"); 这样优化就感觉看起来更加直观 **8、if条件表达式不要太复杂**…

    2024年12月11日
    2.6K00

Leave a Reply

登录后才能评论