如何通过传输模型完成页面能力

介绍

在业务中我们经常能遇到这种场景,我们的数据是通过调用第三方接口获取的,在业务系统中没有对应的存储模型,但是我们又需要展示这些数据,这时候可以利用传输模型不建表的特性完成这个功能。

定义传输模型

package pro.shushi.pamirs.demo.api.tmodel;

import pro.shushi.pamirs.meta.annotation.Field;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.base.TransientModel;

@Model.model(DemoCreateOrder.MODEL_MODEL)
@Model(displayName = "下单页面模型")
public class DemoCreateOrder extends TransientModel {

    public static final String MODEL_MODEL = "demo.DemoCreateOrder";

    @Field.Integer
    @Field(displayName ="下单人uid")
    private Long userId;
}

定义action,由于传输模型用于表现层和应用层之间的数据交互,本身不会存储,没有默认的数据管理器,只有数据构造器,所以需要手动添加所需的queryOne、create、update等方法

注意:传输模型没有数据管理器能力,所以不提供类似queryPage的方法,后续版本考虑支持中

package pro.shushi.pamirs.demo.core.action;

import org.springframework.stereotype.Component;
import pro.shushi.pamirs.demo.api.tmodel.DemoCreateOrder;
import pro.shushi.pamirs.meta.annotation.Action;
import pro.shushi.pamirs.meta.annotation.Function;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.api.dto.condition.Pagination;
import pro.shushi.pamirs.meta.api.dto.wrapper.IWrapper;
import pro.shushi.pamirs.meta.constant.FunctionConstants;
import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum;
import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum;
import pro.shushi.pamirs.meta.enmu.ViewTypeEnum;

import static pro.shushi.pamirs.meta.enmu.FunctionOpenEnum.*;

@Component
@Model.model(DemoCreateOrder.MODEL_MODEL)
public class DemoCreateOrderAction {

    @Function.Advanced(type = FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryByEntity)
    @Function(openLevel = {LOCAL, REMOTE, API})
    public DemoCreateOrder queryOne(DemoCreateOrder query) {
        return query;
    }

    @Action.Advanced(name = FunctionConstants.create, managed = true)
    @Action(displayName = "创建", label = "确定", summary = "添加", bindingType = ViewTypeEnum.FORM)
    @Function(name = FunctionConstants.create)
    @Function.fun(FunctionConstants.create)
    public DemoCreateOrder create(DemoCreateOrder data) {
        return data;
    }

    @Action.Advanced(name = FunctionConstants.update, managed = true)
    @Action(displayName = "确定", summary = "修改", bindingType = ViewTypeEnum.FORM)
    @Function(name = FunctionConstants.update)
    @Function.fun(FunctionConstants.update)
    public DemoCreateOrder update(DemoCreateOrder data) {
        return data;
    }
}

Oinone社区 作者:nation原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11327.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
nation的头像nation数式员工
上一篇 2024年5月23日 pm9:59
下一篇 2024年5月24日 pm2:53

相关推荐

  • JSON转换工具类

    JSON转换工具类 JSON转对象 pro.shushi.pamirs.meta.util.JsonUtils JSON转模型 pro.shushi.pamirs.framework.orm.json.PamirsDataUtils

    2023年11月1日
    1.3K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.1K00
  • Oinone协同开发使用手册

    概述 Oinone平台为开发人员提供了本地环境 – 测试环境之间的协同开发模式,可以使得开发人员在本地环境中设计的模型、函数等元数据实时被测试环境使用并设计。开发人员开发完成对应页面和功能后,可以部署至测试环境直接进行测试。 本篇文章将详细介绍协同开发模式在实际开发中的应用及相关内容。 名词解释 本地环境: 开发人员的本地启动环境 测试环境: 在测试服务器上部署的业务测试环境,业务工程服务和设计器服务共用中间件 业务工程服务:在测试服务器上部署的业务工程 设计器服务: 在测试服务器上部署的设计器镜像 一套环境:以测试环境为例,业务工程服务和设计器服务共同组成一套环境 生产环境: 在生产服务器上部署的业务生产环境 环境准备 部署了一个可用的设计器服务,并能正常访问。(需参照下文启动设计器环境内容进行相应修改) 准备一个用于开发的java工程。 准备一个用于部署测试环境的服务器。 协同参数介绍 用于测试环境的参数 -PmetaProtected=${value} 启用元数据保护,只有配置相同启动参数的服务才允许对元数据进行更新。通常该命令用于设计器服务和业务工程服务,并且两个环境需使用相同的元数据保护标记(value)进行启动。本地环境不使用该命令,以防止本地环境在协同开发时意外修改测试环境元数据,导致元数据混乱。 用法 java -jar boot.jar -PmetaProtected=pamirs 用于本地环境的配置 使用命令配置ownSign(推荐) java -jar boot.jar –pamirs.distribution.session.ownSign=demo 使用yaml配置ownSign pamirs: distribution: session: allMetaRefresh: false # 启用元数据全量刷新(备用配置,如遇元数据错误或混乱,启用该配置可进行恢复,使用一次后关闭即可) ownSign: demo # 协同开发元数据隔离标记,用于区分不同开发人员的本地环境,其他环境不允许使用 启动设计器环境 docker-run启动 -e PROGRAM_ARGS=-PmetaProtected=pamirs docker-compose启动 services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: # 指定spring.profiles.active ARG_ENV: dev # 指定-Plifecycle ARG_LIFECYCLE: INSTALL # jvm参数 JVM_OPTIONS: "" # 程序参数 PROGRAM_ARGS: "-PmetaProtected=pamirs" PS: java [JVM_OPTIONS?] -jar boot.jar [PROGRAM_ARGS?] 开发流程示例图 具体使用步骤详见协同开发支持

    2024年7月24日
    1.7K00
  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.4K00
  • 自定义RSQL占位符(placeholder)及在权限中使用

    1 自定义RSQL占位符常用场景 统一的数据权限配置 查询表达式的上下文变量扩展 2 自定义RSQL的模板 /** * 演示Placeholder占位符基本定义 * * @author Adamancy Zhang at 13:53 on 2024-03-24 */ @Component public class DemoPlaceHolder extends AbstractPlaceHolderParser { private static final String PLACEHOLDER_KEY = "${thisPlaceholder}"; /** * 占位符 * * @return placeholder */ @Override public String namespace() { return PLACEHOLDER_KEY; } /** * 占位符替换值 * * @return the placeholder replace to the value */ @Override protected String value() { return PamirsSession.getUserId().toString(); } /** * 优先级 * * @return execution order of placeholders, ascending order. */ @Override public Integer priority() { return 0; } /** * 是否激活 * * @return the placeholder is activated */ @Override public Boolean active() { return true; } } 注意事项 在一些旧版本中,priority和active可能不起作用,为保证升级时不受影响,请保证该属性配置正确。 PLACEHOLDER_KEY变量表示自定义占位符使用的关键字,需按照所需业务场景的具体功能并根据上下文语义正确定义。 为保证占位符可以被正确替换并执行,所有占位符都不应该出现重复,尤其是不能与系统内置的重复。 3 占位符使用时的优先级问题 多个占位符在进行替换时,会根据优先级按升序顺序执行,如需要指定替换顺序,可使用Spring的Order注解对其进行排序。 import org.springframework.core.annotation.Order; @Order(0) 4 Oinone平台内置的占位符 占位符 数据类型 含义 备注 ${currentUser} String 当前用户ID 未登录时无法使用 ${currentRoles} Set<String> 当前用户的角色ID集合 未登录时无法使用 5 如何覆盖平台内置的占位符? 通过指定占位符的优先级,并定义相同的namespace可优先替换。 6 如何定义会话级别的上下文变量? 在上述模板中,我们使用的是Oinone平台内置的上下文变量进行演示,通常情况下,我们需要根据实际业务场景增加上下文变量,以此来实现所需功能。 下面,我们将根据当前用户获取当前员工ID定义该上下文变量进行演示。 /** * 员工Session * * @author Adamancy Zhang at 14:33 on 2024-03-24 */ @Component public class EmployeeSession implements HookBefore { private static final String SESSION_KEY = "CUSTOM_EMPLOYEE_ID"; @Autowired private DemoEmployeeService demoEmployeeService; public static String getEmployeeId() { return PamirsSession.getTransmittableExtend().get(SESSION_KEY);…

    2024年3月24日
    1.4K00

Leave a Reply

登录后才能评论