函数之异步执行

总体介绍

异步任务是非常常见的一种开发模式,它在分布式的开发模式中有很多应用场景如:

  • 高并发场景中,我们一般采用把长流程切短,用异步方式去掉可以异步的非关键功能,缩小主流程响应时间,提升用户体验
  • 异构系统的集成调用,通过异步任务完成解耦与自动重试
  • 分布式系统最终一致性的可选方案

本文将介绍oinone是如何结合Spring+TbSchedule来完成异步任务

构建第一个异步任务

新建PetShopService和PetShopServiceImpl

1、 新建PetShopService定义updatePetShops方法

package pro.shushi.pamirs.demo.api.service;

import pro.shushi.pamirs.demo.api.model.PetShop;
import pro.shushi.pamirs.meta.annotation.Fun;
import pro.shushi.pamirs.meta.annotation.Function;

import java.util.List;

@Fun(PetShopService.FUN_NAMESPACE)
public interface PetShopService {
    String FUN_NAMESPACE = "demo.PetShop.PetShopService";

    @Function
    void updatePetShops(List<PetShop> petShops);
}

2、PetShopServiceImpl实现PetShopService接口并在updatePetShops增加@XAsync注解

package pro.shushi.pamirs.demo.core.service;

import org.springframework.stereotype.Component;
import pro.shushi.pamirs.demo.api.model.PetShop;
import pro.shushi.pamirs.demo.api.service.PetShopService;
import pro.shushi.pamirs.meta.annotation.Fun;
import pro.shushi.pamirs.meta.annotation.Function;
import pro.shushi.pamirs.trigger.annotation.XAsync;
import java.util.List;

@Fun(PetShopService.FUN_NAMESPACE)
@Component
public class PetShopServiceImpl implements PetShopService {
    @Override
    @Function
    @XAsync(displayName = "异步批量更新宠物商店",limitRetryNumber = 3,nextRetryTimeValue = 60)
    public void updatePetShops(List<PetShop> petShops) {
        new PetShop().updateBatch(petShops);
    }
}

a. displayName = "异步批量更新宠物商店",定义异步任务展示名称
b. limitRetryNumber = 3,定义任务失败重试次数,,默认:-1不断重试
c. nextRetryTimeValue = 60,定义任务失败重试的时间数,默认:3
d. nextRetryTimeUnit,定义任务失败重试的时间单位,默认:TimeUnitEnum.SECOND
e. delayTime,定义任务延迟执行的时间数,默认:0
f. delayTimeUnit,定义任务延迟执行的时间单位,默认:TimeUnitEnum.SECOND

修改PetShopBatchUpdateAction调用异步任务

  1. 引入PetShopService
  2. 修改conform方法,调用petShopService.updatePetShops方法

    package pro.shushi.pamirs.demo.core.action;
    @Model.model(PetShopBatchUpdate.MODEL_MODEL)
    @Component
    public class PetShopBatchUpdateAction {
    @Autowired
    private PetShopService petShopService;
    
    @Action(displayName = "确定",bindingType = ViewTypeEnum.FORM,contextType = ActionContextTypeEnum.SINGLE)
    public PetShopBatchUpdate conform(PetShopBatchUpdate data){
            List<PetShop> shops = ArgUtils.convert(PetShopProxy.MODEL_MODEL, PetShop.MODEL_MODEL,proxyList);
           // 调用异步任务
            petShopService.updatePetShops(shops);
        });
        return data;
    }
    }

不同应用如何隔离执行单元

在schedule跟模块部署一起的时候,多模块独立boot的情况下,需要做必要的配置。如果schedule独立部署则没有必要,因为全部走远程,不存在类找不到的问题

  1. 通过配置pamirs.zookeeper.rootPath,确保两组机器都能覆盖所有任务分片,这样不会漏数据
  2. 通过pamirs.event.schedule.ownSign来隔离。确保两组机器只取各自产生的数据,这样不会重复执行数据
    pamirs:
    zookeeper:
    zkConnectString: 127.0.0.1:2181
    zkSessionTimeout: 60000
    rootPath: /demo
    event:
    enabled: true
    schedule:
      enabled: true
      ownSign: demo
    rocket-mq:
      namesrv-addr: 127.0.0.1:9876

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11480.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm8:10
下一篇 2024年5月27日 pm8:19

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.5K00
  • Oinone协同开发源码分析

    前提 源码分析版本是 5.1.x版本 什么是协同开发模式 协同开发模式解决的是不同开发,在开发同一个模型时,不会相互影响,也不会影响到测试环境详见:Oinone协同开发使用手册 协同开发原理 在协同模式下,本地开发的元数据,配置pamirs.data.distribution.session.ownSign参数后,元数据前缀加ownSign值,然后只存在redis缓存,不落库。其它环境无法直接访问到该数据。测试环境,或其它环境访问,需要在url上加ownSign等于设置的,则读redis数据时,除了加载通用数据,也会合并ownSign前缀的redis数据,显示出来 注意事项 协同开发仅支持界面设计器,其他设计器均不支持 不支持权限配置 不支持工作流触发 版本支持 完整支持5.1.0及以上 功能详解 启动时操作 做元数据保护检查 配置ownSign,则key拼接为 ownSign + ‘:’ + key 清除掉ownSign的redis缓存数据;非ownSign不用清理 计算差量数据 有差量数据,放入ownSign标识数据,并清理本地标识 dubbo注册服务,group拼接group + ownSign 后进行注册 读取时操作 读本地 组装key: ownSign + ‘:’ + key 本地缓存有数据,更新缓存本地数据,返回 本地没有数据,读redis,并插入本地缓存 读远程 dubbo注册消费者,group拼接group + ownSign 后进行泛化调用 元数据保护检查 开启数据保护模式,在启动参数里加-PmetaProtected=pamirs 会在启动时,往redis里写入数据 private static final String META_PROTECTED_KEY = “pamirs:check:meta-protected”; private void writeMetaProtected(String metaProtected) { stringRedisTemplate.opsForValue().set(META_PROTECTED_KEY, metaProtected); } 如果同时又设置 pamirs.data.distribution.session.ownSign则会报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 处理逻辑如下 看redis是否启用保护标识的值 获取pamirs.distribution.session.ownSign配置 没有启动参数 且redis没有值,则retrun 如果有启动参数且配置了ownSign,报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 如果有启动参数且 redis没有值或启动参数设置 -P metaForceProtected,则写入redis 如果有启动参数, 且启动参数跟redis值不同,则报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 如果没有启动参数且redis有值,但没有配置ownSign 报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 核心代码如下MetadataProtectedChecker public void process(AppLifecycleCommand command, Set<String> runModules, List<ModuleDefinition> installModules, List<ModuleDefinition> upgradeModules, List<ModuleDefinition> reloadModules) { String currentMetaProtected = stringRedisTemplate.opsForValue().get(META_PROTECTED_KEY); String metaProtected = getMetaProtected(); boolean hasCurrentMetaProtected = StringUtils.isNotBlank(currentMetaProtected); boolean hasMetaProtected = StringUtils.isNotBlank(metaProtected); if (!hasCurrentMetaProtected && !hasMetaProtected) { return; } if (hasMetaProtected) { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { // 如果有启动参数且配置了ownSign throw new UnsupportedOperationException(“在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign]”); } if (!hasCurrentMetaProtected || isForceProtected()) { writeMetaProtected(metaProtected); } else if (!metaProtected.equals(currentMetaProtected)) { // 如果有启动参数, 且启动参数跟redis值不同 throw unsupportedLocalOperation(); } } else { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { return; } // 没有启动参数且redis有值,但没有配置ownSign 报错 throw unsupportedLocalOperation(); } } 取ownSign方式 看header是否有ownSign这个标识 header没有,则从配置里取,并放到header里 ownSign的获取核心代码 CdDistributionSessionFillOwnSignApi @Override public String getCdOwnSign() { String cdOwnSign = null; // 看header是否有ownSign这个标识…

    2024年9月12日
    1.5K00
  • 问题排查调试工具使用手册

    当前端发起对应用的访问时,如果出现错误,那么我们可以通过以下方式进行简易排查,如果排查不出来,则也可以把排查工具给出的信息发送给Oinone官方售后进行进一步分析。本文将通过模拟异常信息,来介绍排查工具,提供了哪些辅助信息帮我们来快速定位问题。 排查工具基础介绍 通过前端页面的 /debug 路由路径访问调试工具的页面,假设我们的前端页面访问地址为http://localhost:6800,那么我们的排查工具请求路径就是 http://localhost:6800/debug排查工具可以帮我们排查前端页面元数据异常和后端接口的异常 排查前端页面元数据 将问题页面浏览器地址栏内 page 后的部分复制到调试工具的 debug 路由后重新发起请求,如图可以看到调试工具展示的信息,可以根据这些信息排查问题。 排查后端接口 后端接口出现问题后,打开(在原页面)浏览器的调试工具,切换到“网络”的标签页,在左侧的历史请求列表中找到需要调试的请求,右键会弹出菜单,点击菜单中的 “复制”,再次展开该菜单,点击二级菜单中的“以 fetch 格式复制”,这样可以复制到调试所需要的信息 2.复制调试信息到“接口调试”标签页内的文本框内,点击“发起请求”按钮获取调试结果 我们可以看到页面展示了该接口的各种调试信息,我们可以据此排查问题。 场景化的排查思路 业务代码中存在代码bug 报错后发起调试请求,我们可以看到,调试工具直接给出了异常抛出的具体代码所在位置,此时再切换到“全部堆栈”下,可以看到是业务类的233行导致的空指针异常,查看代码后分析可得是data.getName().eqauls方法在调用前未做条件判断补全该判断后代码可以正常执行 业务代码中没有直接的错误,异常在平台代码中抛出 报错后发起调试请求可以看到异常不在业务代码内再切换到“全部堆栈”,可以看到具体异常信息,提示core_demo_item表出现了重复的主键,该表是DemoItem模型的我们还可以切换到“sql调试”的标签页,可以看到出错的具体sql语句经过分析可以得知是240行的data.create()�重复创建数据导致的。 三、排查工具无法定位怎么办 当我们通过排查工具还是没有定位到问题的时候,可以通过调试页面的“下载全部调试数据”和“下载调试数据”按钮将调试信息的数据发送给官方售后人员帮助我们定位排查问题。 点击页面最顶部的“下载全部调试数据”按钮,可以下载页面调试数据和接口调试数据点击“调试接口”标签页内的“下载调试数据”按钮,可以下载接口调试数据 四、排查工具细节

    2024年5月21日
    1.9K00
  • EIP开放接口使用MD5验签发起请求(v5.x)

    验签工具类 PS:该验签方法仅在pamirs-core的5.0.16版本以上可正常使用 public class EipSignUtils { public static final String SIGN_METHOD_MD5 = "md5"; private static final String SIGN_METHOD_HMAC = "hmac"; private static final String SECRET_KEY_ALGORITHM = "HmacMD5"; private static final String MESSAGE_DIGEST_MD5 = "MD5"; public static String signTopRequest(Map<String, String> params, String secret, String signMethod) throws IOException { // 第一步:检查参数是否已经排序 String[] keys = params.keySet().toArray(new String[0]); Arrays.sort(keys); // 第二步:把所有参数名和参数值串在一起 StringBuilder query = new StringBuilder(); if (SIGN_METHOD_MD5.equals(signMethod)) { query.append(secret); } for (String key : keys) { String value = params.get(key); if (StringUtils.isNoneBlank(key, value)) { query.append(key).append(value); } } // 第三步:使用MD5/HMAC加密 byte[] bytes; if (SIGN_METHOD_HMAC.equals(signMethod)) { bytes = encryptHMAC(query.toString(), secret); } else { query.append(secret); bytes = encryptMD5(query.toString()); } // 第四步:把二进制转化为大写的十六进制(正确签名应该为32大写字符串,此方法需要时使用) return byte2hex(bytes); } private static byte[] encryptHMAC(String data, String secret) throws IOException { byte[] bytes; try { SecretKey secretKey = new SecretKeySpec(secret.getBytes(StandardCharsets.UTF_8), SECRET_KEY_ALGORITHM); Mac mac = Mac.getInstance(secretKey.getAlgorithm()); mac.init(secretKey); bytes = mac.doFinal(data.getBytes(StandardCharsets.UTF_8)); } catch (GeneralSecurityException e) { throw new IOException(e.toString(), e); } return bytes; } private static byte[] encryptMD5(String data) throws IOException { return encryptMD5(data.getBytes(StandardCharsets.UTF_8)); } private static byte[] encryptMD5(byte[] data) throws IOException { try { MessageDigest md = MessageDigest.getInstance(MESSAGE_DIGEST_MD5); return md.digest(data); } catch (NoSuchAlgorithmException e)…

    2024年6月29日
    1.3K00

Leave a Reply

登录后才能评论