RocketMQ消费者在macOS中出现类似RemotingTimeoutException: invokeSync call timeout错误处理办法:
- 命令行中执行脚本
scutil --set HostName $(scutil --get LocalHostName)
- 重启应用
本文来自投稿,不代表Oinone社区立场,如若转载,请注明出处:https://doc.oinone.top/backend/13588.html
RocketMQ消费者在macOS中出现类似RemotingTimeoutException: invokeSync call timeout错误处理办法:
scutil --set HostName $(scutil --get LocalHostName)
本文来自投稿,不代表Oinone社区立场,如若转载,请注明出处:https://doc.oinone.top/backend/13588.html
场景描述 在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch; 使用前你应该 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/ 有一个可用的ElasticSearch环境(本地项目能引用到) 前置约束 增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。 项目引入搜索步骤 1、boot工程加入相关依赖包 boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本 boot工程加入pamris-channel的工程依赖 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-core</artifactId> </dependency> 2、api工程加入相关依赖包 在XXX-api中增加入pamirs-channel-api的依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-api</artifactId> </dependency> 3、yml文件配置 在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致 pamirs: record: sql: #改成自己本地路径(或服务器路径) store: /Users/oinone/record boot: modules: – channel ## 确保也安装了sql_record – sql_record channel: packages: # 增强模型扫描包配置 – com.xxx.xxx elastic: url: 127.0.0.1:9200 4、项目的模块增加模块依赖 XXXModule增加对ChannelModule的依赖 @Module(dependencies = {ChannelModule.MODULE_MODULE}) 5、增加增强模型(举例) package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; } 6、重启系统看效果 1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据 2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作 个性化dump逻辑 通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。 重写ShardingModelEnhance模型的synchronize方法 重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】 package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.List; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; @Field(displayName = "nick") private String nick;…
平台提供了很多的表达式,如果这些表达式不满足场景?那我们应该如何新增表达式去满足项目的需求?目前平台支持的表达式内置函数,参考 1. 扩展表达式的场景 注解@Validation的rule字段支持配置表达式校验如果需要判断入参List类型字段中的某一个参数进行NULL校验,发现平台的内置函数不支持该场景的配置,这里就可以通过平台的机制,对内置函数进行扩展。 常见的一些代码场景,如下: package pro.shushi.pamirs.demo.core.action; ……引用类 @Model.model(PetShopProxy.MODEL_MODEL) @Component public class PetShopProxyAction extends DataStatusBehavior<PetShopProxy> { @Override protected PetShopProxy fetchData(PetShopProxy data) { return data.queryById(); } @Validation(ruleWithTips = { @Validation.Rule(value = "!IS_BLANK(data.code)", error = "编码为必填项"), @Validation.Rule(value = "LEN(data.name) < 128", error = "名称过长,不能超过128位"), }) @Action(displayName = "启用") @Action.Advanced(invisible="!(activeRecord.code !== undefined && !IS_BLANK(activeRecord.code))") public PetShopProxy dataStatusEnable(PetShopProxy data){ data = super.dataStatusEnable(data); data.updateById(); return data; } ……其他代码 } 2. 新建一个自定义表达式的函数 校验入参如果是个集合对象的情况下,单个对象的某个字段如果为空,返回false的函数。 例子:新建一个CustomCollectionFunctions类 package xxx.xxx.xxx; import org.apache.commons.collections4.CollectionUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.common.constants.NamespaceConstants; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.List; import static pro.shushi.pamirs.meta.enmu.FunctionCategoryEnum.COLLECTION; import static pro.shushi.pamirs.meta.enmu.FunctionLanguageEnum.JAVA; import static pro.shushi.pamirs.meta.enmu.FunctionOpenEnum.LOCAL; import static pro.shushi.pamirs.meta.enmu.FunctionSceneEnum.EXPRESSION; /** * 自定义内置函数 */ @Fun(NamespaceConstants.expression) @Component public class CustomCollectionFunctions { /** * LIST_FIELD_NULL 就是我们自定义的表达式,不能与已经存在的表达式重复!!! * * @param list * @param field * @return */ @Function.Advanced( displayName = "校验集成的参数是否为null", language = JAVA, builtin = true, category = COLLECTION ) @Function.fun("LIST_FIELD_NULL") @Function(name = "LIST_FIELD_NULL", scene = {EXPRESSION}, openLevel = LOCAL, summary = "函数示例: LIST_FIELD_NULL(list,field),函数说明: 传入一个对象集合,校验集合的字段是否为空" ) public Boolean listFieldNull(List list, String field) { if (null == list) { return false; } if (CollectionUtils.isEmpty(list)) { return false; } for (Object data : list) { Object value =…
异步任务总体介绍 函数的触发和定时在很多场景中会用到,也是一个oinone的基础能力。比如我们的流程产品中在定义流程触发时就会让用户选择模型触发还是时间触发,就是用到了函数的触发与定时能力。 触发任务TriggerTaskAction 触发任务的创建,使用sql-record模块监听mysql的binlog事件,通过rocketmq发送变更数据消息,收到MQ消息后,创建TriggerAutoTask。 触发任务的执行,使用TBSchedule拉取触发任务后,执行相应函数。 项目中引入依赖 1、项目的API工程引入依赖pamirs-core-trigger模块 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-api</artifactId> </dependency> 2、DemoModule在模块依赖定义中增加@Module(dependencies={TriggerModule.MODULE_MODULE}) @Component @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, UserModule.MODULE_MODULE, TriggerModule.MODULE_MODULE} ) @Module.module(DemoModule.MODULE_MODULE) @Module.Advanced(selfBuilt = true, application = true) @UxHomepage(PetShopProxy.MODEL_MODEL) public class DemoModule implements PamirsModule { ……其他代码 } 3、项目的boot工程引入依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> yml文件修改(applcation-xxx.yml) a. 修改pamris.event.enabled和pamris.event.schedule.enabled为trueb. pamirs_boot_modules增加启动模块:trigger、sql_record pamirs: record: sql: #改成自己路径 store: /opt/pamirs/logs … event: enabled: true schedule: enabled: true rocket-mq: namesrv-addr: 127.0.0.1:9876 boot: init: true sync: true modules: – base -…… – trigger – sql_record -…… 新建触发任务 新建PetTalentTrigger类,当PetTalent模型的数据记录被新建时触发系统做一些事情 package pro.shushi.pamirs.demo.core.trigger; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.trigger.annotation.Trigger; import pro.shushi.pamirs.trigger.enmu.TriggerConditionEnum; @Fun(PetTalent.MODEL_MODEL) @Slf4j public class PetTalentTrigger { @Function @Trigger(displayName = “PetTalent创建时触发”,name = “PetTalent#Trigger#onCreate”,condition = TriggerConditionEnum.ON_CREATE) public PetTalent onCreate(PetTalent data){ log.info(data.getName() + “,被创建”); //可以增加逻辑 return data; } } 定时任务 定时任务是一种非常常见的模式,这里就不介绍概念了,直接进入示例环节 新建PetTalentAutoTask实现ScheduleAction getInterfaceName()需要跟taskAction.setExecuteNamespace定义保持一致,都是函数的命名空间 taskAction.setExecuteFun("execute");跟执行函数名“execute”一致 TaskType需配置为CYCLE_SCHEDULE_NO_TRANSACTION_TASK,把定时任务的schedule线程分开,要不然有一个时间长的任务会导致普通异步或触发任务全部延时。 package pro.shushi.pamirs.demo.core.task; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.enmu.TimeUnitEnum; import pro.shushi.pamirs.demo.api.model.PetTalent; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.domain.fun.FunctionDefinition; import pro.shushi.pamirs.middleware.schedule.api.ScheduleAction; import pro.shushi.pamirs.middleware.schedule.common.Result; import pro.shushi.pamirs.middleware.schedule.domain.ScheduleItem; import pro.shushi.pamirs.middleware.schedule.eunmeration.TaskType; import pro.shushi.pamirs.trigger.enmu.TriggerTimeAnchorEnum; import pro.shushi.pamirs.trigger.model.ScheduleTaskAction; import pro.shushi.pamirs.trigger.service.ScheduleTaskActionService; @Slf4j @Component @Fun(PetTalent.MODEL_MODEL) public class PetTalentAutoTask implements…
通过源码分析,从页面发起请求,如果通过graphQL传输到具体action的链路,并且在这之间做了哪些隐式处理分析源码版本5.1.x 请求流程大致如下: 拦截所有指定的请求 组装成graphQL请求信息 调用graphQL执行 通过hook拦截先执行 RsqlDecodeHook:rsql解密 UserHook: 获取用户信息, 通过cookies获取用户ID,再查表获取用户信息,放到本地Local线程里 RoleHook: 角色Hook FunctionPermissionHook: 函数权限Hook ,跳过权限拦截的实现放在这一层,对应的配置 pamirs: auth: fun-filter: – namespace: user.PamirsUserTransient fun: login #登录 – namespace: top.PetShop fun: action DataPermissionHook: 数据权限hook PlaceHolderHook:占位符转化替换hook RsqlParseHook: 解释Rsql hook SingletonModelUpdateHookBefore 执行post具体内容 通过hook拦截后执行 QueryPageHook4TreeAfter: 树形Parent查询优化 FieldPermissionHook: 字段权限Hook UserQueryPageHookAfter UserQueryOneHookAfter 封装执行结果信息返回 时序图 核心源码解析 拦截所有指定的请求 /pamirs/模块名RequestController @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { } DefaultRequestExecutor 构建graph请求信息,并调用graph请求 () -> execute(GraphQL::execute, param), param private <T> T execute(BiFunction<GraphQL, ExecutionInput, T> executor, PamirsRequestParam param) { // 获取GraphQL请求信息,包含grapsh schema GraphQL graphQL = buildGraphQL(param); … ExecutionInput executionInput = ExecutionInput.newExecutionInput() .query(param.getQuery()) .variables(param.getVariables().getVariables()) .dataLoaderRegistry(Spider.getDefaultExtension(DataLoaderRegistryApi.class).dataLoader()) .build(); … // 调用 GraphQL的方法execute 执行 T result = executor.apply(graphQL, executionInput); … return result; } QueryAndMutationBinder 绑定graphQL读取写入操作 public static DataFetcher<?> dataFetcher(Function function, ModelConfig modelConfig) { if (isAsync()) { if (FunctionTypeEnum.QUERY.in(function.getType())) { return AsyncDataFetcher.async(dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment), ExecutorServiceApi.getExecutorService()); } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } private static Object dataFetcherAction(Function function, ModelConfig modelConfig, DataFetchingEnvironment environment) { try { SessionExtendUtils.tagMainRequest(); // 使用共享的请求和响应对象 return Spider.getDefaultExtension(ActionBinderApi.class) .action(modelConfig,…
Oinone请求调用链路 请求格式与简单流程 在Oinone中请求数据存储在请求体中,以GQL的方式进行表示,也就是GQL格式的请求。 当我们发送一个GQL格式的请求,后端会对GQL进行解析,确定想要执行的方法,并对这个方法执行过程中所用到的模型进行构建,最后返回响应。 请求 # 请求路径 pamirs/base http://127.0.0.1:8090/pamirs/base # 请求体内容 query{ petShopProxyBQuery{ sayHello(shop:{shopName:"cpc"}){ shopName } } } 解析 # 简单理解 query 操作类型 petShopProxyBQuery 模块名称 + Query sayHello 方法 fun sayHello() 可以传入参数,参数名为 shop shopName 需要得到的值 响应 # data中的内容 "data": { "petShopQuery": { "hello": { "shopName": "cpc" } } } 具体流程 Oinone是基于SpringBoot的,在Controller中处理请求 会接收所有以 /pamirs 开始的POST请求,/pamirs/后携带的是模块名 @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { …….. } 整体脉络 第四步执行中有两大重要的步骤,一步是动态构建GQL,一步是执行请求。 动态构建GQL 请求执行