Schedule相关

1、Schedule初始化

TODO

2、Schedule执行器的入口

通常本地创建了Schedule,没有被正常执行,可以通过这个入口去排查问题

pro.shushi.pamirs.middleware.schedule.core.tasks.AbstractScheduleTaskDealSingle#selectTasks

3、Schedule执行环境隔离

项目中开发如果本地进行任务调试,通过通过指定ownSign进行环境隔离,如果不配置可能会导致这个任务被别的机器执行,本机的代码无法调试,如果开发的时候出现任务未执行可能是这个原因导致的

  event:
    enabled: true
    schedule:
      enabled: true
      ownSign: dev_wx
    rocket-mq:
      namesrv-addr: 127.0.0.1:9876

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4555.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2023年11月15日 pm2:39
下一篇 2023年11月16日 pm1:46

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • Oinone设计器部署参数说明

    概述 Oinone提供两种设计器部署方式,合作伙伴可以自行选择适合自己的部署方式。 Docker配置参数 环境变量 ARG_ENV:指定spring.profiles.active(默认:dev) ARG_LIFECYCLE:指定-Plifecycle(默认:INSTALL) JVM_OPTIONS:jvm参数 PROGRAM_ARGS:程序参数 JVM_OPTIONS和PROGRAM_ARGS参数说明 java [JVM_OPTIONS?] -jar boot.jar [PROGRAM_ARGS?] 端口说明 PS:以下为目前设计器镜像的全部端口,不同类型镜像的端口由于内置服务不同,使用的端口数量不同,但端口号是完全一致的。 80:前端服务端口(设计器访问入口) 8091:后端服务端口 8093:后端EIP服务端口 20880:Dubbo端口 3306:内置MySQL端口 2181:内置Zookeeper端口 6379:内置Redis端口 9876/10991:内置RocketMQ端口 9999:内置本地OSS默认端口 挂载目录说明(挂载虚拟卷) /opt/pamirs为镜像的工作目录,所有挂载目录均在该目录下。 /opt/pamirs/ext:应用配置文件目录;包含application.yml、logback.xml、license.lic等配置文件 /opt/pamirs/nginx/vhost:Nginx配置文件目录 /opt/pamirs/logs:后端服务日志目录 /opt/mq/conf/broker.conf:RocketMQ的broker配置文件 /opt/pamirs/outlib:非设计器内置包的外部加载目录(外部库),可以添加任何jar包集成到设计器中。 /opt/pamirs/dist:前端服务目录 /opt/pamirs/static:前端静态文件目录;LOCAL类型的OSS上传和下载目录; docker run启动常用参数 -e:指定环境变量 -p:指定端口映射 -v:指定挂载目录(挂载虚拟卷) docker run [OPTIONS] IMAGE [COMMAND] [ARG…] docker compose启动常用配置 services: container: image: $IMAGE container_name: $CONTAINER_NAME restart: always # docker run -e environment: KEY1: VALUE1 KEY2: VALUE2 … # docker run -p ports: – $machinePort1:$containerPort1 – $machinePort2:$containerPort2 … # docker run -v volumes: – $machinePath1:$containerPath1 – $machinePath2:$containerPath2 … docker compose常用命令 # 使用docker-compose.yaml启动 docker compose up -d # 使用docker-compose.yaml停止并删除容器 docker compose down -v # 指定配置文件启动 docker compose -f config.yaml up -d # 指定配置文件停止并删除容器 docker compose -f config.yaml down -v JAR包方式启动 下载Oinone专属启动器 oinone-boot-starter.zip 启动命令变化 # 原命令 java -jar boot.jar # 变更后命令 boot-starter java -jar boot.jar PS:更多命令可查看后端无代码设计器Jar包启动方法

    2024年11月4日
    1.3K00
  • Maven Setting 配置详解

    常用标签概览 servers/server:配置私有仓库用户名和密码进行认证,以 id 进行关联。 mirrors/mirror:配置镜像仓库拉取时的地址源和额外配置。 profiles/profile:配置多个可能使用的镜像仓库。 activeProfiles/activeProfile:配置默认激活的 profile,以 id 进行关联。 Oinone 私有仓库配置 以下配置可以在使用 Oinone 私有仓库的同时,也可以正常使用 aliyun 镜像源。 <servers> <server> <id>shushi</id> <username>${username}</username> <password>${password}</password> </server> </servers> <mirrors> <mirror> <id>shushi</id> <mirrorOf>shushi</mirrorOf> <url>http://ss.nexus.ixtx.fun/repository/public</url> <!– 忽略 https 认证,maven 版本过高时需要配置 –> <blocked>false</blocked> </mirror> </mirrors> <profiles> <profile> <id>shushi</id> <repositories> <repository> <!– 对应 server.id –> <id>shushi</id> <url>http://ss.nexus.ixtx.fun/repository/public</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </repository> </repositories> <pluginRepositories> <pluginRepository> <!– 对应 server.id –> <id>shushi</id> <url>http://ss.nexus.ixtx.fun/repository/snapshots</url> <releases> <enabled>false</enabled> </releases> <snapshots> <enabled>true</enabled> </snapshots> </pluginRepository> </pluginRepositories> </profile> <profile> <id>aliyun</id> <repositories> <repository> <id>aliyun</id> <url>https://maven.aliyun.com/repository/public</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </repository> </repositories> <pluginRepositories> <pluginRepository> <id>aliyun</id> <url>https://maven.aliyun.com/repository/public</url> <releases> <enabled>true</enabled> </releases> <snapshots> <enabled>false</enabled> </snapshots> </pluginRepository> </pluginRepositories> </profile> </profiles> <activeProfiles> <!– 使用 shushi 私有仓库 –> <activeProfile>shushi</activeProfile> <!– 使用 aliyun 镜像仓库 –> <activeProfile>aliyun</activeProfile> </activeProfiles> 常见问题 使用 mvn 时无法拉取 Oinone 最新版镜像,提示找不到对应的包 原因:在 Oinone 开源后,oinone-pamirs 内核相关包都被部署到 maven 中央仓库,但由于其他镜像仓库的同步存在延时,在未正确同步的其他镜像源拉取时会出现找不到对应的包相关异常。 解决方案:检查 mirrors 中是否配置了 aliyun 镜像源,如果配置了,使用上述 Oinone 私有仓库配置重新配置后,再进行拉取。这一问题是由于 mirrors 配置不当,拦截了所有从 maven 中央仓库拉取的地址替换为了 aliyun 镜像源导致的。

    2025年11月10日
    45600
  • 【KDB】后端部署使用Kingbase数据库(人大金仓/电科金仓)

    KDB数据库配置 驱动配置 Maven配置 点击查看官方驱动说明 PS:官方驱动说明中的9.0.0版本目前并未推送至公共仓库,因此使用8.6.0版本替代。 <kdb.version>8.6.0</kdb.version> <dependency> <groupId>cn.com.kingbase</groupId> <artifactId>kingbase8</artifactId> <version>${kdb.version}</version> </dependency> 离线驱动下载 kingbase8-8.6.0.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.kingbase8.Driver url: jdbc:kingbase8://127.0.0.1:4321/pamirs?currentSchema=base&autosave=always&cleanupSavepoints=true username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.PGValidConnectionChecker PS:validConnectionCheckerClassName配置非常重要,连接存活检查是连接池可以保持连接的重要配置。Druid连接池可以自动识别大多数的数据库类型,由于jdbc:kingbase8协议属于非内置识别的类型,因此需要手动配置。 连接url配置 点击查看官方JDBC连接配置说明 url格式 jdbc:kingbase8://${host}:${port}/${database}?currentSchema=${schema}&autosave=always&cleanupSavepoints=true 在jdbc连接配置时,${database}和${schema}必须配置,不可缺省。autosave=always、cleanupSavepoints=true属于必须配置的事务参数,否则事务回滚行为与其他数据库不一致,会导致部分操作失败。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: KDB version: 9 major-version: V009R001C001B0030 pamirs: type: KDB version: 9 major-version: V009R001C001B0030 数据库版本 type version majorVersion V009R001C001B0030 KDB 9 V009R001C001B0030 V008R006C008B0020 KDB 9 V009R001C001B0030 PS:由于方言开发环境为V009R001C001B0030版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言与PostgreSQL数据库并无明显差异,Kingbase数据库可以直接使用PostgreSQL数据库方言。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint KDB数据库关键参数检查 PS:以下参数为Oinone平台接入KDB时使用的数据库参数,参数不一致时可尝试启动。 数据库模式 推荐配置:DB_MODE=oracle 数据库安装/初始化时配置 是否大小写敏感 推荐配置:enable_ci=off 是否启用语句级回滚 推荐配置:ora_statement_level_rollback = off show ora_statement_level_rollback; set ora_statement_level_rollback=off; 此参数在Oinone平台接入时使用的版本中未体现出应有的效果。从官方提供的文档来看,此参数与数据库连接串上的autosave=always&cleanupSavepoints=true配置结果应该是一致的,由于此参数配置无效,因此在数据库连接串上必须指定这两个参数。 Oinone平台在最初开发时使用的是基于mysql数据库的事务特性,即不支持语句级回滚的事务行为。因此,为了保证Oinone平台功能正常,需要使得事务行为保持一致。 如不一致,则可能出现某些功能无法正常使用的情况。如:流程设计器首次发布定时触发的工作流时会出现报错;导入/导出任务出现异常无法正常更新任务状态等。 是否将空字符串视为NULL 推荐配置:ora_input_emptystr_isnull = off show ora_input_emptystr_isnull; set ora_input_emptystr_isnull=off; KDB数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is…

    2024年10月29日
    1.3K00
  • 导入设计数据时dubbo超时导入失败

    问题描述 在本地启动导入设计数据的工程时,会出现dubbo调用超时导致设计数据无法完整导入的问题。 org.apache.dubbo.remoting.TimeoutException 产生原因 pom中的包依赖出现问题,导致没有使用正确的远程服务。 本地可能出现的异常报错堆栈信息如下: xception in thread "fixed-1-thread-10" PamirsException level: ERROR, code: 10100025, type: SYSTEM_ERROR, msg: 函数执行错误, extra:, extend: null at pro.shushi.pamirs.meta.common.exception.PamirsException$Builder.errThrow(PamirsException.java:190) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:118) at sun.reflect.GeneratedMethodAccessor498.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethodWithGivenArgs(AbstractAspectJAdvice.java:644) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethod(AbstractAspectJAdvice.java:633) at org.springframework.aop.aspectj.AspectJAroundAdvice.invoke(AspectJAroundAdvice.java:70) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:175) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:95) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:691) at pro.shushi.pamirs.framework.orm.DefaultWriteApi$$EnhancerBySpringCGLIB$$b4cea2b4.createOrUpdateBatchWithResult(<generated>) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatchWithResult(OriginDataManager.java:161) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatch(OriginDataManager.java:152) at pro.shushi.pamirs.ui.designer.service.installer.UiDesignerInstaller.lambda$install$0(UiDesignerInstaller.java:42) at pro.shushi.pamirs.core.common.function.AroundRunnable.run(AroundRunnable.java:26) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.dubbo.rpc.RpcException: Failed to invoke the method createOrUpdateBatchWithResult in the service org.apache.dubbo.rpc.service.GenericService. Tried 1 times of the providers [192.168.0.123:20880] (1/1) from the registry 127.0.0.1:2181 on the consumer 192.168.0.123 using the dubbo version 2.7.22. Last error is: Invoke remote method timeout. method: $invoke, provider: dubbo://192.168.0.123:20880/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi?anyhost=true&application=pamirs-demo&application.version=1.0.0&check=false&deprecated=false&dubbo=2.0.2&dynamic=true&generic=true&group=pamirs&interface=ui.designer.UiDesignerViewLayout.oio.defaultWriteApi&metadata-type=remote&methods=*&payload=104857600&pid=69748&qos.enable=false&register.ip=192.168.0.123&release=2.7.15&remote.application=pamirs-test&retries=0&serialization=pamirs&service.name=ServiceBean:pamirs/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi:1.0.0&side=consumer&sticky=false&timeout=5000&timestamp=1701136088893&version=1.0.0, cause: org.apache.dubbo.remoting.TimeoutException: Waiting server-side response timeout by scan timer. start time: 2023-11-28 10:23:05.835, end time: 2023-11-28 10:23:10.856, client elapsed: 695 ms, server elapsed: 4326 ms, timeout: 5000 ms, request: Request [id=0, version=2.0.2, twoway=true, event=false, broken=false, data=null], channel: /192.168.0.123:49449 -> /192.168.0.123:20880 at org.apache.dubbo.rpc.cluster.support.FailoverClusterInvoker.doInvoke(FailoverClusterInvoker.java:110) at org.apache.dubbo.rpc.cluster.support.AbstractClusterInvoker.invoke(AbstractClusterInvoker.java:265) at org.apache.dubbo.rpc.cluster.interceptor.ClusterInterceptor.intercept(ClusterInterceptor.java:47) at org.apache.dubbo.rpc.cluster.support.wrapper.AbstractCluster$InterceptorInvokerNode.invoke(AbstractCluster.java:92) at org.apache.dubbo.rpc.cluster.support.wrapper.MockClusterInvoker.invoke(MockClusterInvoker.java:98) at org.apache.dubbo.registry.client.migration.MigrationInvoker.invoke(MigrationInvoker.java:170) at org.apache.dubbo.rpc.proxy.InvokerInvocationHandler.invoke(InvokerInvocationHandler.java:96) at org.apache.dubbo.common.bytecode.proxy0.$invoke(proxy0.java) at pro.shushi.pamirs.framework.faas.distribution.computer.RemoteComputer.compute(RemoteComputer.java:124) at pro.shushi.pamirs.framework.faas.FunEngine.run(FunEngine.java:80) at pro.shushi.pamirs.distribution.faas.remote.spi.service.RemoteFunctionHelper.run(RemoteFunctionHelper.java:68) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:109) … 20 more Caused…

    2023年11月28日
    1.1K00

Leave a Reply

登录后才能评论