低无一体使用 (后端)

低无一体使用 (后端)

低无一体应用

打开低无一体应用。

低无一体使用 (后端)

选择应用模块

选择模块选择框中,下拉选择需要使用低无一体的应用模块。

低无一体使用 (后端)

生成SDK

点击生成SDK, 生成当前选择应用模块的低无一体SDK。

低无一体使用 (后端)

点击之后的系统消息
低无一体使用 (后端)

提示"生成SDK成功",表示操作完成。

生成扩展工程

点击下载扩展工程模板, 生成当前选择应用模块的低无一体SDK。

低无一体使用 (后端)

点击之后的系统消息

低无一体使用 (后端)

提示"下载扩展工程模板成功",表示操作完成。

之后刷新页面

下载扩展工程

使用系统消息中的链接或者详情页中的下载地址下载扩展工程

低无一体使用 (后端)

扩展工程结构概览

低无一体使用 (后端)

自定义Action示例

import org.springframework.stereotype.Component;
import pro.shushi.oinone.stand.testExt.model.Model0000000001;
import pro.shushi.pamirs.meta.annotation.Action;
import pro.shushi.pamirs.meta.annotation.Function;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.api.dto.condition.Pagination;
import pro.shushi.pamirs.meta.api.dto.wrapper.IWrapper;
import pro.shushi.pamirs.meta.constant.FunctionConstants;
import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum;
import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum;

/**
 * Model0000000001Action
 *
 * @author yakir on 2025/01/20 14:59.
 */
@Component
@Model.model(Model0000000001.MODEL_MODEL)
public class Model0000000001Action {

    @Function.Advanced(type = FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<Model0000000001> queryPage(Pagination<Model0000000001> page, IWrapper<Model0000000001> queryWrapper) {

        return new Model0000000001().queryPage(page, queryWrapper);
    }

    @Action(displayName = "sayHello")
    @Action.Advanced(type = FunctionTypeEnum.QUERY)
    public Model0000000001 sayHello(Model0000000001 query) {
        query.setName(query.getName() + System.currentTimeMillis());
        return query;
    }
}

注意事项 ⚠️⚠️⚠️

  • Oinone底层依赖版本与设计器和业务应用一致 (参考 版本更新日志 )
  • 扩展工程如需独立启动, 手动修改application.yml中安装模块和pom.xml中模块jar的依赖配置

Oinone社区 作者:yakir原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/20451.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
yakir的头像yakir数式员工
上一篇 2025年2月13日 pm4:44
下一篇 2025年2月19日 pm3:35

相关推荐

  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    76100
  • 【HighGo】后端部署使用HighGo数据库

    HighGo数据库配置 驱动配置 jdbc仓库 https://mvnrepository.com/artifact/com.highgo/HgdbJdbc Maven配置(6.0.1版本可用) <highgo.version>6.0.1.jre8</highgo.version> <dependency> <groupId>com.highgo</groupId> <artifactId>HgdbJdbc</artifactId> <version>${highgo.version}</version> </dependency> JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.highgo.jdbc.Driver url: jdbc:highgo://127.0.0.1:5866/oio_base?currentSchema=base,utl_file username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 官方文档 https://www.highgo.com/document/zh-cn/application/jdbc.html url格式 jdbc:highgo://ip:端口号/数据库名?currentSchema=schema1,schema2 在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。 jdbc指定schema时可以在currentSchema后指定多个schema,中间用,分隔,第一个schema为业务库表存放的主schema。 highgo数据库6.0版本里每个数据库默认会带一个utl_file的schema,该模式与文件访问功能有关,需要带在jdbc的schema中,但不能放在第一个。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: HighGoDB version: 6 major-version: 6.0.1 biz_data: type: HighGoDB version: 6 major-version: 6.0.1 数据库版本 type version majorVersion 6.0.x HighGo 6 6.0.1 PS:由于方言开发环境为6.0.1版本,其他类似版本(6.0.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: HighGoDB version: 6 major-version: 6.0.1 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Highgo数据库用户初始化及授权 — init oio_base user (user name can be modified by oneself) CREATE USER oio_base WITH PASSWORD 'Test@12345678'; — if using automatic database and schema creation, this is very important. ALTER USER oio_base CREATEDB; SELECT * FROM pg_roles; — if using highgo database, this authorization is required. GRANT CREATE ON DATABASE highgo TO oio_base;

    2025年7月10日
    20600
  • 如何使用位运算的数据字典

    场景举例 日常有很多项目,数据库中都有表示“多选状态标识”的字段。在这里用我们项目中的一个例子进行说明一下: 示例一: 表示某个商家是否支持多种会员卡打折(如有金卡、银卡、其他卡等),项目中的以往的做法是:在每条商家记录中为每种会员卡建立一个标志位字段。如图: 用多字段来表示“多选标识”存在一定的缺点:首先这种设置方式很明显不符合数据库设计第一范式,增加了数据冗余和存储空间。再者,当业务发生变化时,不利于灵活调整。比如,增加了一种新的会员卡类型时,需要在数据表中增加一个新的字段,以适应需求的变化。  – 改进设计:标签位flag设计二进制的“位”本来就有表示状态的作用。可以用各个位来分别表示不同种类的会员卡打折支持:这样,“MEMBERCARD”字段仍采用整型。当某个商家支持金卡打折时,则保存“1(0001)”,支持银卡时,则保存“2(0010)”,两种都支持,则保存“3(0011)”。其他类似。表结构如图: 我们在编写SQL语句时,只需要通过“位”的与运算,就能简单的查询出想要数据。通过这样的处理方式既节省存储空间,查询时又简单方便。 //查询支持金卡打折的商家信息:   select * from factory where MEMBERCARD & b'0001'; // 或者:   select * from factory where MEMBERCARD & 1;    // 查询支持银卡打折的商家信息:   select * from factory where MEMBERCARD & b'0010'; // 或者:   select * from factory where MEMBERCARD & 2; 二进制( 位运算)枚举 可以通过@Dict注解设置数据字典的bit属性或者实现BitEnum接口来标识该枚举值为2的次幂。二进制枚举最大的区别在于值的序列化和反序列化方式是不一样的。 位运算的枚举定义示例 import pro.shushi.pamirs.meta.annotation.Dict; import pro.shushi.pamirs.meta.common.enmu.BitEnum; @Dict(dictionary = ClientTypeEnum.DICTIONARY, displayName = "客户端类型枚举", summary = "客户端类型枚举") public enum ClientTypeEnum implements BitEnum { PC(1L, "PC端", "PC端"), MOBILE(1L << 1, "移动端", "移动端"), ; public static final String DICTIONARY = "base.ClientTypeEnum"; private final Long value; private final String displayName; private final String help; ClientTypeEnum(Long value, String displayName, String help) { this.value = value; this.displayName = displayName; this.help = help; } @Override public Long value() { return value; } @Override public String displayName() { return displayName; } @Override public String help() { return help; } } 使用方法示例 API: addTo 和 removeFrom List<ClientTypeEnum> clientTypes = module.getClientTypes(); // addTo ClientTypeEnum.PC.addTo(clientTypes); // removeFrom ClientTypeEnum.PC.removeFrom(clientTypes); 在查询条件中的使用 List<Menu> moduleMenus = new Menu().queryListByWrapper(menuPage, LoaderUtils.authQuery(wrapper).eq(Menu::getClientTypes, ClientTypeEnum.PC));

    2023年11月24日
    1.3K00
  • 模型字段之序列化方式

    本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。 字段序列化方式说明 序列化方式 说明 备注 JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项 DOT 点拼接集合元素 COMMA 逗号拼接集合元素 BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断 字段序列化方式举例 1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。 @Model.model(PetItem.MODEL_MODEL) @Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"}) public class PetItem extends AbstractDemoCodeModel{ public static final String MODEL_MODEL="demo.PetItem"; @Field(displayName = "品种") @Field.many2one @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"}) private PetType type; @Field(displayName = "品种类型",invisible = true) private Long typeId; @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE) @Field.Advanced(columnDefinition = "varchar(1024)") private List<PetItemDetail> petItemDetails; @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true) @Field.Advanced(columnDefinition = "varchar(1024)") private List<String> tags; } 字段序列化注意点 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。 使用Field#serialize属性指定序列化方式,默认为JSON。 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录 注册自己的序列化器 注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。 package pro.shushi.pamirs.framework.compute.serialize; import org.apache.commons.lang3.StringUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer; import pro.shushi.pamirs.meta.common.constants.CharacterConstants; import pro.shushi.pamirs.meta.enmu.SerializeEnum; import pro.shushi.pamirs.meta.util.TypeUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * 点表达式序列生成处理器实现 * @author shushi@shushi.pro * @version 1.0.0 */ @SuppressWarnings("rawtypes") @Slf4j @Component public class DotSerializeProcessor implements Serializer<Object, String> { @Override public String serialize(String ltype, Object value) { if (null == value) { return null; } if (List.class.isAssignableFrom(value.getClass())) { return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT); } else { return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT); } } @SuppressWarnings("unchecked") @Override public Object deserialize(String ltype, String ltypeT, String value,…

    2024年5月24日
    1.4K00
  • 字段类型之关系描述的特殊场景(常量关联)

    场景概述 【字段类型之关系与引用】一文中已经描述了各种关系字段的常规写法,还有一些特殊场景如:关系映射中存在常量,或者M2M中间表是大于两个字段构成。 场景描述 1、PetTalent模型增加talentType字段2、PetItem与PetTalent的多对多关系增加talentType(达人类型),3、PetItemRelPetTalent中间表维护petItemId、petTalentId以及talentType,PetDogItem和PetCatItem分别重写petTalents字段,关系中增加常量描述。示意图如下: 实际操作步骤 Step1 新增 TalentTypeEnum package pro.shushi.pamirs.demo.api.enumeration; import pro.shushi.pamirs.meta.annotation.Dict; import pro.shushi.pamirs.meta.common.enmu.BaseEnum; @Dict(dictionary = TalentTypeEnum.DICTIONARY,displayName = "达人类型") public class TalentTypeEnum extends BaseEnum<TalentTypeEnum,Integer> { public static final String DICTIONARY ="demo.TalentTypeEnum"; public final static TalentTypeEnum DOG =create("DOG",1,"狗达人","狗达人"); public final static TalentTypeEnum CAT =create("CAT",2,"猫达人","猫达人"); } Step2 PetTalent模型增加talentType字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.demo.api.enumeration.TalentTypeEnum; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(PetTalent.MODEL_MODEL) @Model(displayName = "宠物达人",summary="宠物达人",labelFields ={"name"}) public class PetTalent extends AbstractDemoIdModel{ public static final String MODEL_MODEL="demo.PetTalent"; @Field(displayName = "达人") private String name; @Field(displayName = "达人类型") private TalentTypeEnum talentType; } Step3 修改PetItem的petTalents字段,在关系描述中增加talentType(达人类型) @Field.many2many(relationFields = {"petItemId"},referenceFields = {"petTalentId","talentType"},through = PetItemRelPetTalent.MODEL_MODEL ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id","talentType"}) @Field(displayName = "推荐达人",summary = "推荐该商品的达人们") private List<PetTalent> petTalents; Step4 PetDogItem增加petTalents字段,重写父类PetItem的关系描述 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Field(displayName = "推荐达人") @Field.many2many( through = "PetItemRelPetTalent", relationFields = {"petItemId"}, referenceFields = {"petTalentId","talentType"} ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id", "#1#"}, domain = " talentType == DOG") private List<PetTalent> petTalents; Step5 PetCatItem增加petTalents字段,重写父类PetItem的关系描述 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Field(displayName = "推荐达人") @Field.many2many( through = "PetItemRelPetTalent", relationFields = {"petItemId"}, referenceFields = {"petTalentId","talentType"} ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id", "#2#"}, domain = " talentType == CAT") private List<PetTalent> petTalents; Step6 PetCatItem增加petTalents字段,many2one关系示例 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Model.model(PetPet.MODEL_MODEL) @Model(displayName…

    2024年5月25日
    1.4K00

Leave a Reply

登录后才能评论