IWrapper、QueryWrapper和LambdaQueryWrapper使用

条件更新updateByWrapper

通常我们在更新的时候new一个对象出来在去更新,减少更新的字段

Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE),
        Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId)

使用基础模型的updateById方法更新指定字段的方法:

  • new 一下update对象出来,更新这个对象。
    WorkflowUserTask userTaskUp = new WorkflowUserTask();
    userTaskUp.setId(userTask.getId());
    userTaskUp.setNodeContext(json);
    userTaskUp.updateById();

条件删除updateByWrapper

    public List<T> delete(List<T> data) {
        List<Long> petTypeIdList = new ArrayList();
        for(T item:data){
            petTypeIdList.add(item.getId());
        }
        Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList));
        return data;
    }

构造条件查询数据

  • 示例1: LambdaQueryWrapper拼接查询条件
    private void queryPetShops() {
        LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery();
        query.from(PetShop.MODEL_MODEL);
        query.setSortable(Boolean.FALSE);
        query.orderBy(true, true, PetShop::getId);
        List<PetShop> petShops2 = new PetShop().queryList(query);
        System.out.printf(petShops2.size() + "");
    }
  • 示例2: IWrapper拼接查询条件
    private void queryPetShops() {
        IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery()
                .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L);
        List<PetShop> petShops4 = new PetShop().queryList(wrapper);
        System.out.printf(petShops4.size() + "");
    }
  • 示例3: QueryWrapper拼接查询条件
    private void queryPetShops() {
        //使用Lambda获取字段名,防止后面改字段名漏改
        String nameField = LambdaUtil.fetchFieldName(PetTalent::getName);
        //使用Lambda获取Clumon名,防止后面改字段名漏改
        String nameColumn = PStringUtils.fieldName2Column(nameField);
        QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL)
                .eq(nameColumn, "test");
        List<PetShop> petShops5 = new PetShop().queryList(wrapper2);
        System.out.printf(petShops5.size() + "");
    }

IWrapper转为LambdaQueryWrapper

    @Function.Advanced(type= FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) {
        LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda();
       // 非存储字段从QueryData中获取
        Map<String, Object> queryData = queryWrapper.getQueryData();
        if (null != queryData && !queryData.isEmpty()) {
            String codes = (String) queryData.get("codes");
            if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) {
                wrapper.in(PetShopProxy::getCode, codes.split(","));
            }
        }

        return new PetShopProxy().queryPage(page, wrapper);
    }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11467.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm7:22
下一篇 2024年5月25日 pm8:10

相关推荐

  • 部分模型不动态修改表结构(由单独DDL处理)

    需求描述 实际项目中, 存在部分模型不动态修改表结构,由单独DDL脚本处理,常见的场景有: 已存在库和表中使用Oinone进行功能开发,此时对于已经存在的表对应的模型不允许改表结构 其他情况不希望动态改变表结构的情况 实现步骤 新建NODDL的基础模型 模型公共字段 公共字段说明:使用Oinone进行开发时,业务模型需继承基础IdModel(或者由IdModel衍生出的子类),这些基础模型有createDate(创建时间)、writeDate(更新时间)、createUid(创建人ID)和writeUid(更新人ID)等公共字段;实际表中公共字段可能与Oinone有所不同。 实现方式 方式1:公共属性字段用平台提供的createDate、writeDate、createUid和writeUid,通过指定column与表中的实际字段对应.【推荐】该方式,公共字段的处理可以继续使用平台的默认赋值处理方式; 方式2:继承平台的时候,把公共字段排除掉(配置unInheritedFields),然后自行加通用字段:排除字段:@Model.Advanced(type= ModelTypeEnum.ABSTRACT, ordering = "createAt DESC, id DESC", unInheritedFields = {"createUid","writeUid","createDate","writeDate"})【不推荐】该方式,公共字段的赋值逻辑需要自行处理,略显复杂; 实现方式举例 下面的示例以方式1举例;假设表的基础字段分别是:createAt、updateAt、createId和updateId 与平台的不同. 不自动DDL的抽象模型示例 import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.FieldStrategyEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.Date; /** * 假设表的基础字段分别是:createAt、updateAt、createId和updateId 与平台的不同 */ @Model.model(BaseNoDdlModel.MODEL_MODEL) @Model(displayName = "不自动DDL的抽象模型") @Model.Advanced(type= ModelTypeEnum.ABSTRACT, ordering = "createAt DESC, id DESC") public abstract class BaseNoDdlModel extends IdModel { public static final String MODEL_MODEL = "hr.std.BaseNoDdlModel"; // 如果原表的主键的列名不是ID的情况,这里可以定义column指定ID属性对应的列名 /** @Field.PrimaryKey @Field(displayName = "主键ID") @Field.Advanced(column = "XLH") private Long id; **/ // 下面这几个字段按实际项目中的情况来增加,包括字段名 @Field.Advanced(columnDefinition = "DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP", column = "createAt", insertStrategy = FieldStrategyEnum.NEVER, updateStrategy = FieldStrategyEnum.NEVER, batchStrategy = FieldStrategyEnum.NEVER) @Field(displayName = "创建时间", priority = 200) private Date createDate; @Field.Advanced(columnDefinition = "DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP", column = "updateAt", batchStrategy = FieldStrategyEnum.NEVER) @Field(displayName = "更新时间", priority = 210) private Date writeDate; @Field.Advanced(column = "createId") @Field(displayName = "创建人ID", priority = 220, invisible = true) private Long createUid; @Field.Advanced(column = "updateId") @Field(displayName = "更新人ID", priority = 230, invisible = true) private Long writeUid; } 不需动态DDL的业务模型,业务模型继承BaseNoDdlModel。 其他业务模型如果有相同的需求类似的做法 /** * 测试合同表 */ @Model.model(InspectionInfo.MODEL_MODEL) @Model(displayName = "合同", labelFields…

    2025年2月22日
    81200
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    80800
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.4K00
  • Oinone环境保护(v5.2.3以上)

    概述 Oinone平台为合作伙伴提供了环境保护功能,以确保在一套环境可以在较为安全前提下修改配置文件,启动多个JVM等部署操作。 本章内容主要介绍与环境保护功能相关的启动参数。 名词解释 本地开发环境:开发人员在本地启动业务工程的环境 公共环境:包含设计器镜像和业务工程的环境 环境保护参数介绍 【注意】参数是加在程序实参 (Program arguments)上,通常可能错误的加在Active Profiles上了 -PenvProtected=${value} 是否启用环境保护,默认为true。 环境保护是通过与最近一次保存在数据库的base_platform_environment表中数据进行比对,并根据每个参数的配置特性进行判断,在启动时将有错误的内容打印在启动日志中,以便于开发者进行问题排查。 除此之外,环境保护功能还提供了一些生产配置的优化建议,开发者可以在启动时关注这些日志,从而对生产环境的配置进行调优。 -PsaveEnvironments=${value} 是否将此次启动的环境参数保存到数据库,默认为true。 在某些特殊情况下,为了避免公共环境中的保护参数发生不必要的变化,我们可以选择不保存此次启动时的配置参数到数据库中,这样就不会影响其他JVM启动时发生校验失败而无法启动的问题。 -PstrictProtected=${value} 是否使用严格校验模式,默认为false 通常我们建议在公共环境启用严格校验模式,这样可以最大程度的保护公共环境的元数据不受其他环境干扰。 PS:在启用严格校验模式时,需避免内外网使用不同连接地址的场景。如无法避免,则无法启用严格校验模式。 常见问题 需要迁移数据库,并更换了数据库连接地址该如何操作? 将原有数据库迁移到新数据库。 修改配置文件中数据库的连接地址。 在启动脚本中增加-PenvProtected=false关闭环境保护。 启动JVM服务可以看到有错误的日志提示,但不会中断本次启动。 移除启动脚本中的-PenvProtected=false或将值改为true,下次启动时将继续进行环境保护检查。 可查看数据库中base_platform_environment表中对应数据库连接配置已发生修改,此时若其他JVM在启动前未正确修改,则无法启动。 本地开发时需要修改Redis连接地址到本地,但希望不影响公共环境的使用该如何操作? PS:由于Redis中的元数据缓存是根据数据库差量进行同步的,此操作会导致公共环境在启动时无法正确刷新Redis中的元数据缓存,需要配合pamirs.distribution.session.allMetaRefresh参数进行操作。如无特殊必要,我们不建议使用该形式进行协同开发,多次修改配置会导致出错的概率增加。 本地环境首次启动时,除了修改Redis相关配置外,还需要配置pamirs.distribution.session.allMetaRefresh=true,将本地新连接的Redis进行初始化。 在本地启动时,增加-PenvProtected=false -PsaveEnvironments=false启动参数,以确保本地启动不会修改公共环境的配置,并且可以正常通过环境保护检测。 本地环境成功启动并正常开发功能后,需要发布到公共环境进行测试时,需要先修改公共环境中业务工程配置pamirs.distribution.session.allMetaRefresh=true后,再启动业务工程。 启动一次业务工程后,将配置还原为pamirs.distribution.session.allMetaRefresh=false。

    2024年10月21日
    1.0K00
  • 【HighGo】后端部署使用HighGo数据库

    HighGo数据库配置 驱动配置 jdbc仓库 https://mvnrepository.com/artifact/com.highgo/HgdbJdbc Maven配置(6.0.1版本可用) <highgo.version>6.0.1.jre8</highgo.version> <dependency> <groupId>com.highgo</groupId> <artifactId>HgdbJdbc</artifactId> <version>${highgo.version}</version> </dependency> JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.highgo.jdbc.Driver url: jdbc:highgo://127.0.0.1:5866/oio_base?currentSchema=base,utl_file username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 官方文档 https://www.highgo.com/document/zh-cn/application/jdbc.html url格式 jdbc:highgo://ip:端口号/数据库名?currentSchema=schema1,schema2 在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。 jdbc指定schema时可以在currentSchema后指定多个schema,中间用,分隔,第一个schema为业务库表存放的主schema。 highgo数据库6.0版本里每个数据库默认会带一个utl_file的schema,该模式与文件访问功能有关,需要带在jdbc的schema中,但不能放在第一个。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: HighGoDB version: 6 major-version: 6.0.1 biz_data: type: HighGoDB version: 6 major-version: 6.0.1 数据库版本 type version majorVersion 6.0.x HighGo 6 6.0.1 PS:由于方言开发环境为6.0.1版本,其他类似版本(6.0.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: HighGoDB version: 6 major-version: 6.0.1 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Highgo数据库用户初始化及授权 — init oio_base user (user name can be modified by oneself) CREATE USER oio_base WITH PASSWORD 'Test@12345678'; — if using automatic database and schema creation, this is very important. ALTER USER oio_base CREATEDB; SELECT * FROM pg_roles; — if using highgo database, this authorization is required. GRANT CREATE ON DATABASE highgo TO oio_base;

    2025年7月10日
    24800

Leave a Reply

登录后才能评论