IWrapper、QueryWrapper和LambdaQueryWrapper使用

条件更新updateByWrapper

通常我们在更新的时候new一个对象出来在去更新,减少更新的字段

Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE),
        Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId)

使用基础模型的updateById方法更新指定字段的方法:

  • new 一下update对象出来,更新这个对象。
    WorkflowUserTask userTaskUp = new WorkflowUserTask();
    userTaskUp.setId(userTask.getId());
    userTaskUp.setNodeContext(json);
    userTaskUp.updateById();

条件删除updateByWrapper

    public List<T> delete(List<T> data) {
        List<Long> petTypeIdList = new ArrayList();
        for(T item:data){
            petTypeIdList.add(item.getId());
        }
        Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList));
        return data;
    }

构造条件查询数据

  • 示例1: LambdaQueryWrapper拼接查询条件
    private void queryPetShops() {
        LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery();
        query.from(PetShop.MODEL_MODEL);
        query.setSortable(Boolean.FALSE);
        query.orderBy(true, true, PetShop::getId);
        List<PetShop> petShops2 = new PetShop().queryList(query);
        System.out.printf(petShops2.size() + "");
    }
  • 示例2: IWrapper拼接查询条件
    private void queryPetShops() {
        IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery()
                .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L);
        List<PetShop> petShops4 = new PetShop().queryList(wrapper);
        System.out.printf(petShops4.size() + "");
    }
  • 示例3: QueryWrapper拼接查询条件
    private void queryPetShops() {
        //使用Lambda获取字段名,防止后面改字段名漏改
        String nameField = LambdaUtil.fetchFieldName(PetTalent::getName);
        //使用Lambda获取Clumon名,防止后面改字段名漏改
        String nameColumn = PStringUtils.fieldName2Column(nameField);
        QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL)
                .eq(nameColumn, "test");
        List<PetShop> petShops5 = new PetShop().queryList(wrapper2);
        System.out.printf(petShops5.size() + "");
    }

IWrapper转为LambdaQueryWrapper

    @Function.Advanced(type= FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) {
        LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda();
       // 非存储字段从QueryData中获取
        Map<String, Object> queryData = queryWrapper.getQueryData();
        if (null != queryData && !queryData.isEmpty()) {
            String codes = (String) queryData.get("codes");
            if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) {
                wrapper.in(PetShopProxy::getCode, codes.split(","));
            }
        }

        return new PetShopProxy().queryPage(page, wrapper);
    }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11467.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm7:22
下一篇 2024年5月25日 pm8:10

相关推荐

  • 如何通过自定义支持excel导出的动态表头

    介绍 本文需要阅读过前置文档如何自定义Excel导出功能,动态表头的功能在前置文档的基础上做的进一步扩展,本文未提到的部分都参考这个前置文档。 在日常的业务开发中,我们在导出的场景会遇到需要设置动态表头的场景,比如统计商品在最近1个月的销量,固定表头列为商品的名称等基础信息,动态表头列为最近一个月的日期,在导出的时候设置每个日期的销量,本文将通过此业务场景提供示例代码。 1.自定义导出任务模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemDynamicExcelExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel动态表头导出任务") public class DemoItemDynamicExcelExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemDynamicExcelExportTask"; } 2.自定义导出任务处理数据的扩展点 package pro.shushi.pamirs.demo.core.excel.exportdemo.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.core.common.FetchUtil; import pro.shushi.pamirs.core.common.cache.MemoryIterableSearchCache; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.file.api.config.FileConstant; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.entity.EasyExcelCellDefinition; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelFixedHeadHelper; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.framework.common.entry.TreeNode; import pro.shushi.pamirs.meta.annotation.ExtPoint; import pro.shushi.pamirs.meta.api.CommonApiFactory; import pro.shushi.pamirs.meta.api.core.orm.ReadApi; import pro.shushi.pamirs.meta.api.core.orm.systems.relation.RelationReadApi; import pro.shushi.pamirs.meta.api.dto.config.ModelConfig; import pro.shushi.pamirs.meta.api.dto.config.ModelFieldConfig; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.enmu.TtypeEnum; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.*; @Component public class DemoItemDynamicExportExtPoint extends ExcelExportSameQueryPageTemplate<DemoItem> implements ExcelTemplateInit { public static final String TEMPLATE_NAME ="商品动态导出"; @Override public List<ExcelWorkbookDefinition> generator() { ExcelFixedHeadHelper excelFixedHeadHelper = ExcelHelper.fixedHeader(DemoItem.MODEL_MODEL,TEMPLATE_NAME) .createBlock(TEMPLATE_NAME, DemoItem.MODEL_MODEL) .setType(ExcelTemplateTypeEnum.EXPORT); return Collections.singletonList(excelFixedHeadHelper.build()); } public static void buildHeader(ExcelFixedHeadHelper excelFixedHeadHelper) { excelFixedHeadHelper.addColumn("name","名称") .addColumn("cateName","类目") .addColumn("searchFrom","搜索来源") .addColumn("description","描述") .addColumn("itemPrice","单价") .addColumn("inventoryQuantity","库存"); } @Override @ExtPoint.Implement(expression = "context.model == \"" + DemoItem.MODEL_MODEL+"\" && context.name == \"" +TEMPLATE_NAME+"\"" ) public List<Object> fetchExportData(ExcelExportTask exportTask, ExcelDefinitionContext context) { List<Object> result = super.fetchExportData(exportTask,context); Object block = result.get(0); if (block instanceof ArrayList) { ((List<Object>) block).forEach(o -> { if (o instanceof DemoItem) { DemoItem item = (DemoItem) o; // TODO 设置动态表头部分字段的值 item.get_d().put("2024-09-10", "1111"); item.get_d().put("2024-09-11", "2222"); }…

    2024年9月11日
    2.7K00
  • 模型字段之序列化方式

    本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。 字段序列化方式说明 序列化方式 说明 备注 JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项 DOT 点拼接集合元素 COMMA 逗号拼接集合元素 BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断 字段序列化方式举例 1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。 @Model.model(PetItem.MODEL_MODEL) @Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"}) public class PetItem extends AbstractDemoCodeModel{ public static final String MODEL_MODEL="demo.PetItem"; @Field(displayName = "品种") @Field.many2one @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"}) private PetType type; @Field(displayName = "品种类型",invisible = true) private Long typeId; @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE) @Field.Advanced(columnDefinition = "varchar(1024)") private List<PetItemDetail> petItemDetails; @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true) @Field.Advanced(columnDefinition = "varchar(1024)") private List<String> tags; } 字段序列化注意点 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。 使用Field#serialize属性指定序列化方式,默认为JSON。 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录 注册自己的序列化器 注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。 package pro.shushi.pamirs.framework.compute.serialize; import org.apache.commons.lang3.StringUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer; import pro.shushi.pamirs.meta.common.constants.CharacterConstants; import pro.shushi.pamirs.meta.enmu.SerializeEnum; import pro.shushi.pamirs.meta.util.TypeUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * 点表达式序列生成处理器实现 * @author shushi@shushi.pro * @version 1.0.0 */ @SuppressWarnings("rawtypes") @Slf4j @Component public class DotSerializeProcessor implements Serializer<Object, String> { @Override public String serialize(String ltype, Object value) { if (null == value) { return null; } if (List.class.isAssignableFrom(value.getClass())) { return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT); } else { return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT); } } @SuppressWarnings("unchecked") @Override public Object deserialize(String ltype, String ltypeT, String value,…

    2024年5月24日
    1.5K00
  • Oinone协同开发源码分析

    前提 源码分析版本是 5.1.x版本 什么是协同开发模式 协同开发模式解决的是不同开发,在开发同一个模型时,不会相互影响,也不会影响到测试环境详见:Oinone协同开发使用手册 协同开发原理 在协同模式下,本地开发的元数据,配置pamirs.data.distribution.session.ownSign参数后,元数据前缀加ownSign值,然后只存在redis缓存,不落库。其它环境无法直接访问到该数据。测试环境,或其它环境访问,需要在url上加ownSign等于设置的,则读redis数据时,除了加载通用数据,也会合并ownSign前缀的redis数据,显示出来 注意事项 协同开发仅支持界面设计器,其他设计器均不支持 不支持权限配置 不支持工作流触发 版本支持 完整支持5.1.0及以上 功能详解 启动时操作 做元数据保护检查 配置ownSign,则key拼接为 ownSign + ‘:’ + key 清除掉ownSign的redis缓存数据;非ownSign不用清理 计算差量数据 有差量数据,放入ownSign标识数据,并清理本地标识 dubbo注册服务,group拼接group + ownSign 后进行注册 读取时操作 读本地 组装key: ownSign + ‘:’ + key 本地缓存有数据,更新缓存本地数据,返回 本地没有数据,读redis,并插入本地缓存 读远程 dubbo注册消费者,group拼接group + ownSign 后进行泛化调用 元数据保护检查 开启数据保护模式,在启动参数里加-PmetaProtected=pamirs 会在启动时,往redis里写入数据 private static final String META_PROTECTED_KEY = “pamirs:check:meta-protected”; private void writeMetaProtected(String metaProtected) { stringRedisTemplate.opsForValue().set(META_PROTECTED_KEY, metaProtected); } 如果同时又设置 pamirs.data.distribution.session.ownSign则会报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 处理逻辑如下 看redis是否启用保护标识的值 获取pamirs.distribution.session.ownSign配置 没有启动参数 且redis没有值,则retrun 如果有启动参数且配置了ownSign,报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 如果有启动参数且 redis没有值或启动参数设置 -P metaForceProtected,则写入redis 如果有启动参数, 且启动参数跟redis值不同,则报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 如果没有启动参数且redis有值,但没有配置ownSign 报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 核心代码如下MetadataProtectedChecker public void process(AppLifecycleCommand command, Set<String> runModules, List<ModuleDefinition> installModules, List<ModuleDefinition> upgradeModules, List<ModuleDefinition> reloadModules) { String currentMetaProtected = stringRedisTemplate.opsForValue().get(META_PROTECTED_KEY); String metaProtected = getMetaProtected(); boolean hasCurrentMetaProtected = StringUtils.isNotBlank(currentMetaProtected); boolean hasMetaProtected = StringUtils.isNotBlank(metaProtected); if (!hasCurrentMetaProtected && !hasMetaProtected) { return; } if (hasMetaProtected) { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { // 如果有启动参数且配置了ownSign throw new UnsupportedOperationException(“在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign]”); } if (!hasCurrentMetaProtected || isForceProtected()) { writeMetaProtected(metaProtected); } else if (!metaProtected.equals(currentMetaProtected)) { // 如果有启动参数, 且启动参数跟redis值不同 throw unsupportedLocalOperation(); } } else { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { return; } // 没有启动参数且redis有值,但没有配置ownSign 报错 throw unsupportedLocalOperation(); } } 取ownSign方式 看header是否有ownSign这个标识 header没有,则从配置里取,并放到header里 ownSign的获取核心代码 CdDistributionSessionFillOwnSignApi @Override public String getCdOwnSign() { String cdOwnSign = null; // 看header是否有ownSign这个标识…

    2024年9月12日
    1.3K00
  • 蓝绿发布

    背景 应用程序升级面临最大挑战是新旧业务切换,将软件从测试的最后阶段带到生产环境,同时要保证系统不间断提供服务。长期以来,业务升级渐渐形成了几个发布策略:蓝绿发布、灰度发布和滚动发布,目的是尽可能避免因发布导致的流量丢失或服务不可用问题。 本文主要介绍Oinone平台如何实现蓝绿发布。蓝绿发布:项目逻辑上分为AB组,在项目系统时,首先把A组从负载均衡中摘除,进行新版本的部署。B组仍然继续提供服务。 需求 统一权限统一登录信息不同业务数据 实现方案 首先需要两个环境并统一流量入口,这里使用Nginx配置负载均衡:nginx如何配置后端服务的负载均衡 统一权限配置 在蓝绿环境添加不同的redis前缀 spring: redis: prefix: xxx 在蓝绿环境的修改AuthRedisTemplate Bean,利用setKeySerializer去掉redis前缀。 可以使用@Profile注解指定仅线上环境生效。 @Configuration // @Profile("prod") public class AuthRedisTemplateConfig { @Bean(AuthConstants.REDIS_TEMPLATE_BEAN_NAME) public AuthRedisTemplate<?> authRedisTemplate( RedisConnectionFactory redisConnectionFactory, PamirsStringRedisSerializer pamirsStringRedisSerializer ) { AuthRedisTemplate<Object> template = new AuthRedisTemplate<Object>(redisConnectionFactory, pamirsStringRedisSerializer) { @Override public void afterPropertiesSet() { // 重写 key serializer,去掉前缀隔离 this.setKeySerializer(new PamirsStringRedisSerializer(null)); super.afterPropertiesSet(); } }; return template; } } 统一登录 在蓝绿环境自定义实现pro.shushi.pamirs.user.api.spi.UserCacheApi SPI,去除redis前缀 package pro.shushi.pamirs.top.core.spi; import com.alibaba.fastjson.JSON; import com.google.common.collect.Sets; import org.apache.commons.lang3.StringUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.core.annotation.Order; import org.springframework.dao.DataAccessException; import org.springframework.data.redis.core.RedisOperations; import org.springframework.data.redis.core.SessionCallback; import org.springframework.stereotype.Component; import org.springframework.web.context.request.RequestContextHolder; import pro.shushi.pamirs.auth.api.cache.redis.AuthRedisTemplate; import pro.shushi.pamirs.meta.api.dto.model.PamirsUserDTO; import pro.shushi.pamirs.meta.api.dto.protocol.PamirsRequestVariables; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.spi.SPI; import pro.shushi.pamirs.user.api.cache.UserCache; import pro.shushi.pamirs.user.api.configure.UserConfigure; import pro.shushi.pamirs.user.api.spi.UserCacheApi; import java.net.URI; import java.util.Collections; import java.util.List; import java.util.Optional; import java.util.Set; import java.util.concurrent.TimeUnit; @Order(1) @Component @SPI.Service("MyUserCache") public class MyUserCache implements UserCacheApi { private static final Set<String> DEFAULT_FILTER_URIS = Collections.singleton("/pamirs/message"); @Autowired private AuthRedisTemplate redisTemplate; @Override public PamirsUserDTO getSessionUser(String key) { String objectValue = getUserCacheAndRenewed(key); if (StringUtils.isNotBlank(objectValue)) { return JSON.parseObject(objectValue, PamirsUserDTO.class); } return null; } @Override public void setSessionUser(String key, PamirsUserDTO user, Integer expire) { user.setPassword(null); expire = getExpire(expire); redisTemplate.opsForValue().set(key.replace("'", " "), JSON.toJSONString(user), expire, TimeUnit.SECONDS); // 当前的实现是一个user可以在多个客户端登录,需要在管理端修改user权限后强制清除掉该用户已登录的session,所以需要记录uid对应所有已登录的sessionId String userRelSessionKey = UserCache.createUserRelSessionKey(user.getUserId()); redisTemplate.opsForSet().add(userRelSessionKey, key); redisTemplate.expire(userRelSessionKey,…

    2025年9月18日
    46200
  • 【DM】后端部署使用Dameng数据库(达梦)

    达梦数据库配置 驱动配置 达梦数据库的服务端版本和驱动版本需要匹配,建议使用服务端安装时提供的jdbc驱动,不要使用官方maven仓库中的驱动。 报错 表 xx 中不能同时包含聚集 KEY 和大字段,建表的时候就指定非聚集主键。SELECT * FROM V$DM_INI WHERE PARA_NAME = ‘PK_WITH_CLUSTER’;SP_SET_PARA_VALUE(1,’PK_WITH_CLUSTER’,0) Maven配置 DM8(目前maven仓库最新版本) <dm.version>8.1.2.192</dm.version> <dependency> <groupId>com.dameng</groupId> <artifactId>DmJdbcDriver18</artifactId> <version>${dm.version}</version> </dependency> PS: 8.1.3.12版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 Maven配置 DM7 <dm7.version>7.6.1.120</dm7.version> <dependency> <groupId>com.dameng</groupId> <artifactId>Dm7JdbcDriver18</artifactId> <version>${dm7.version}</version> </dependency> PS: 7.6.1.120版本驱动需要手动上传到nexus仓库使用,本文包含该版本相关内容。 离线驱动下载 Dm7JdbcDriver18-7.6.1.120.jarDmJdbcDriver18-8.1.3.12.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: dm.jdbc.driver.DmDriver # url: jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql url: jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.OracleValidConnectionChecker validationQuery: SELECT 1 FROM DUAL 连接url配置 点击查看官方文档:DM JDBC 编程指南 连接串1 jdbc:dm://127.0.0.1:5236?schema=BASE&clobAsString=true&columnNameUpperCase=false&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:schema参数在低版本驱动区分大小写,高版本驱动不再区分大小写,为了避免错误,统一使用全大写。columnNameUpperCase参数与官方介绍不一致,为了避免错误,需要显式指定。 连接串2 jdbc:dm://127.0.0.1:5236/BASE?clobAsString=true&useUnicode=true&characterEncoding=utf8&compatibleMode=mysql PS:可能是未来更高版本中使用的连接串形式。 达梦数据库在不同驱动版本下需要使用不同的连接串进行处理,具体可参考下表:(使用错误的连接串将无法正常启动) Dm7JdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 7.6.0.165 2019.06.04 1 否 是 否 不支持LocalDateTime类型 7.6.1.120(建议) 2022.09.14 1 是 是 是 – DmJdbcDriver18版本 Build-Time 使用的连接串类型 是否支持指定schema schema是否区分大小写 是否可用 不可用原因 8.1.2.192 2023.01.12 1 是 否 是 – 8.1.3.12(建议) 2023.04.17 2 是 否 是 – 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: DM version: 8 majorVersion: 8 pamirs: type: DM version: 8 majorVersion: 8 数据库版本 type version majorVersion 7-20220916 DM 7 20220916 8-20230418 DM 8 8 schedule方言配置 pamirs: event: schedule: dialect: type: DM version: 8 majorVersion: 8 type version majorVersion…

    2023年11月1日
    12.8K00

Leave a Reply

登录后才能评论