IWrapper、QueryWrapper和LambdaQueryWrapper使用

条件更新updateByWrapper

通常我们在更新的时候new一个对象出来在去更新,减少更新的字段

Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE),
        Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId)

使用基础模型的updateById方法更新指定字段的方法:

  • new 一下update对象出来,更新这个对象。
    WorkflowUserTask userTaskUp = new WorkflowUserTask();
    userTaskUp.setId(userTask.getId());
    userTaskUp.setNodeContext(json);
    userTaskUp.updateById();

条件删除updateByWrapper

    public List<T> delete(List<T> data) {
        List<Long> petTypeIdList = new ArrayList();
        for(T item:data){
            petTypeIdList.add(item.getId());
        }
        Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList));
        return data;
    }

构造条件查询数据

  • 示例1: LambdaQueryWrapper拼接查询条件
    private void queryPetShops() {
        LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery();
        query.from(PetShop.MODEL_MODEL);
        query.setSortable(Boolean.FALSE);
        query.orderBy(true, true, PetShop::getId);
        List<PetShop> petShops2 = new PetShop().queryList(query);
        System.out.printf(petShops2.size() + "");
    }
  • 示例2: IWrapper拼接查询条件
    private void queryPetShops() {
        IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery()
                .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L);
        List<PetShop> petShops4 = new PetShop().queryList(wrapper);
        System.out.printf(petShops4.size() + "");
    }
  • 示例3: QueryWrapper拼接查询条件
    private void queryPetShops() {
        //使用Lambda获取字段名,防止后面改字段名漏改
        String nameField = LambdaUtil.fetchFieldName(PetTalent::getName);
        //使用Lambda获取Clumon名,防止后面改字段名漏改
        String nameColumn = PStringUtils.fieldName2Column(nameField);
        QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL)
                .eq(nameColumn, "test");
        List<PetShop> petShops5 = new PetShop().queryList(wrapper2);
        System.out.printf(petShops5.size() + "");
    }

IWrapper转为LambdaQueryWrapper

    @Function.Advanced(type= FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) {
        LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda();
       // 非存储字段从QueryData中获取
        Map<String, Object> queryData = queryWrapper.getQueryData();
        if (null != queryData && !queryData.isEmpty()) {
            String codes = (String) queryData.get("codes");
            if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) {
                wrapper.in(PetShopProxy::getCode, codes.split(","));
            }
        }

        return new PetShopProxy().queryPage(page, wrapper);
    }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11467.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm7:22
下一篇 2024年5月25日 pm8:10

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 如何改变调度策略,让Schedule独立执行线程

    schedule里,相同的taskType跑多个业务任务,如果其中一个任务大量重试占满了调度线程,会影响别的业务任务及时被执行,如下面截图中,taskType用的是平台内置的常量,这个常量会被其他任务也使用,如果当前任务出现了异常占用了这个taskType的所有线程,那么这个taskType下面的其他任务就会被阻塞延后执行。应该给需要业务及时性的任务单独建立自定义的taskType,这样每个taskType的线程就是独立的,A任务异常不会影响B任务的执行。 1、后台创建task type相关的类,继承BaseScheduleNoTransactionTask,要加springbean的注解,参考:task type建议使用类名 2、提交任务的时候,设置tasktype为步骤1的TaskType 3、控制台新增策略和任务bean名称为步骤1的spring beanName,任务名称 $xxx,右边的占位符内容为yml里面配置的ownSign字段任务的名称也是步骤1的 spring beanName 4、配置完成后,控制台启动任务,就可以测试了

    2024年2月20日
    92500
  • 工作流审核撤回/回退/拒绝/同意/反悔钩子使用

    目录 1. 流程撤回、拒绝和回退调用自定义函数1.1 工作流【撤销】回调钩子1.2 撤销【回退】回调钩子1.3 工作流【拒绝】回调钩子1.4 工作流【同意】回调钩子1.4 工作流【反悔】回调钩子1.4 回调钩子在业务系统中的调用示例2. 自定义审批方式、自定义审批节点名称 1.流程撤回、拒绝和回退调用自定义函数 1.1工作流【撤销】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:当流程实例被撤销时调用入口:pro.shushi.pamirs.workflow.app.core.service.impl.WorkflowInstanceServiceImpl#undoInstance /** * XXX为当前流程触发方式为模型触发时对应的触发模型、 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX recall(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.2撤销【回退】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行回退操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX fallBack(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.3工作流【拒绝】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行拒绝操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX reject(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.4 工作流【同意】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行同意操作时调用入口:pro.shushi.pamirs.workflow.app.core.util.ArtificialTaskUtils @Function(summary = "发起的审批同意时会自动调用此方法") @Function.Advanced(displayName = "审批同意") public Teacher agree(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 // WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new Teacher(); } 1.4 工作流【反悔】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行反悔操作时使用场景:流程待办进行反悔操作时,需要额外更改其他的业务数据逻辑时可用该回调钩子。 注意:该函数的namespace需要设置为流程触发模型。 调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ArtificialRetractOperatorService @Function @Function.fun(WorkflowBizCallConstants.retract) public void retract(WorkflowUserTask workflowUserTask) { // 获取流程实例 workflowUserTask.fieldQuery(WorkflowUserTask::getInstance); WorkflowInstance instance = workflowUserTask.getInstance(); // 获取用户任务实例 WorkflowUserInstance userInstance = new WorkflowUserInstance() .setId(workflowUserTask.getWorkflowUserInstanceId()) .queryById(); // 反悔的用户id…

    2023年11月15日
    1.3K00
  • Oinone请求路由源码分析

    通过源码分析,从页面发起请求,如果通过graphQL传输到具体action的链路,并且在这之间做了哪些隐式处理分析源码版本5.1.x 请求流程大致如下: 拦截所有指定的请求 组装成graphQL请求信息 调用graphQL执行 通过hook拦截先执行 RsqlDecodeHook:rsql解密 UserHook: 获取用户信息, 通过cookies获取用户ID,再查表获取用户信息,放到本地Local线程里 RoleHook: 角色Hook FunctionPermissionHook: 函数权限Hook ,跳过权限拦截的实现放在这一层,对应的配置 pamirs: auth: fun-filter: – namespace: user.PamirsUserTransient fun: login #登录 – namespace: top.PetShop fun: action DataPermissionHook: 数据权限hook PlaceHolderHook:占位符转化替换hook RsqlParseHook: 解释Rsql hook SingletonModelUpdateHookBefore 执行post具体内容 通过hook拦截后执行 QueryPageHook4TreeAfter: 树形Parent查询优化 FieldPermissionHook: 字段权限Hook UserQueryPageHookAfter UserQueryOneHookAfter 封装执行结果信息返回 时序图 核心源码解析 拦截所有指定的请求 /pamirs/模块名RequestController @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { } DefaultRequestExecutor 构建graph请求信息,并调用graph请求 () -> execute(GraphQL::execute, param), param private <T> T execute(BiFunction<GraphQL, ExecutionInput, T> executor, PamirsRequestParam param) { // 获取GraphQL请求信息,包含grapsh schema GraphQL graphQL = buildGraphQL(param); … ExecutionInput executionInput = ExecutionInput.newExecutionInput() .query(param.getQuery()) .variables(param.getVariables().getVariables()) .dataLoaderRegistry(Spider.getDefaultExtension(DataLoaderRegistryApi.class).dataLoader()) .build(); … // 调用 GraphQL的方法execute 执行 T result = executor.apply(graphQL, executionInput); … return result; } QueryAndMutationBinder 绑定graphQL读取写入操作 public static DataFetcher<?> dataFetcher(Function function, ModelConfig modelConfig) { if (isAsync()) { if (FunctionTypeEnum.QUERY.in(function.getType())) { return AsyncDataFetcher.async(dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment), ExecutorServiceApi.getExecutorService()); } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } private static Object dataFetcherAction(Function function, ModelConfig modelConfig, DataFetchingEnvironment environment) { try { SessionExtendUtils.tagMainRequest(); // 使用共享的请求和响应对象 return Spider.getDefaultExtension(ActionBinderApi.class) .action(modelConfig,…

    2024年8月21日
    5.6K02
  • docker status exited(255)

    虚拟机异常退出再启动后,docker run 出现错误: 查看所有容器发现确实存在一个容器,status是 exited(255) docker container ls -all 删除这个容器,命令 docker run 容器id docker rm 56e0  

    2024年11月23日
    77500

Leave a Reply

登录后才能评论