IWrapper、QueryWrapper和LambdaQueryWrapper使用

条件更新updateByWrapper

通常我们在更新的时候new一个对象出来在去更新,减少更新的字段

Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE),
        Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId)

使用基础模型的updateById方法更新指定字段的方法:

  • new 一下update对象出来,更新这个对象。
    WorkflowUserTask userTaskUp = new WorkflowUserTask();
    userTaskUp.setId(userTask.getId());
    userTaskUp.setNodeContext(json);
    userTaskUp.updateById();

条件删除updateByWrapper

    public List<T> delete(List<T> data) {
        List<Long> petTypeIdList = new ArrayList();
        for(T item:data){
            petTypeIdList.add(item.getId());
        }
        Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList));
        return data;
    }

构造条件查询数据

  • 示例1: LambdaQueryWrapper拼接查询条件
    private void queryPetShops() {
        LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery();
        query.from(PetShop.MODEL_MODEL);
        query.setSortable(Boolean.FALSE);
        query.orderBy(true, true, PetShop::getId);
        List<PetShop> petShops2 = new PetShop().queryList(query);
        System.out.printf(petShops2.size() + "");
    }
  • 示例2: IWrapper拼接查询条件
    private void queryPetShops() {
        IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery()
                .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L);
        List<PetShop> petShops4 = new PetShop().queryList(wrapper);
        System.out.printf(petShops4.size() + "");
    }
  • 示例3: QueryWrapper拼接查询条件
    private void queryPetShops() {
        //使用Lambda获取字段名,防止后面改字段名漏改
        String nameField = LambdaUtil.fetchFieldName(PetTalent::getName);
        //使用Lambda获取Clumon名,防止后面改字段名漏改
        String nameColumn = PStringUtils.fieldName2Column(nameField);
        QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL)
                .eq(nameColumn, "test");
        List<PetShop> petShops5 = new PetShop().queryList(wrapper2);
        System.out.printf(petShops5.size() + "");
    }

IWrapper转为LambdaQueryWrapper

    @Function.Advanced(type= FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) {
        LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda();
       // 非存储字段从QueryData中获取
        Map<String, Object> queryData = queryWrapper.getQueryData();
        if (null != queryData && !queryData.isEmpty()) {
            String codes = (String) queryData.get("codes");
            if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) {
                wrapper.in(PetShopProxy::getCode, codes.split(","));
            }
        }

        return new PetShopProxy().queryPage(page, wrapper);
    }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11467.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm7:22
下一篇 2024年5月25日 pm8:10

相关推荐

  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    1.8K00
  • Oinone协同开发源码分析

    前提 源码分析版本是 5.1.x版本 什么是协同开发模式 协同开发模式解决的是不同开发,在开发同一个模型时,不会相互影响,也不会影响到测试环境详见:Oinone协同开发使用手册 协同开发原理 在协同模式下,本地开发的元数据,配置pamirs.data.distribution.session.ownSign参数后,元数据前缀加ownSign值,然后只存在redis缓存,不落库。其它环境无法直接访问到该数据。测试环境,或其它环境访问,需要在url上加ownSign等于设置的,则读redis数据时,除了加载通用数据,也会合并ownSign前缀的redis数据,显示出来 注意事项 协同开发仅支持界面设计器,其他设计器均不支持 不支持权限配置 不支持工作流触发 版本支持 完整支持5.1.0及以上 功能详解 启动时操作 做元数据保护检查 配置ownSign,则key拼接为 ownSign + ‘:’ + key 清除掉ownSign的redis缓存数据;非ownSign不用清理 计算差量数据 有差量数据,放入ownSign标识数据,并清理本地标识 dubbo注册服务,group拼接group + ownSign 后进行注册 读取时操作 读本地 组装key: ownSign + ‘:’ + key 本地缓存有数据,更新缓存本地数据,返回 本地没有数据,读redis,并插入本地缓存 读远程 dubbo注册消费者,group拼接group + ownSign 后进行泛化调用 元数据保护检查 开启数据保护模式,在启动参数里加-PmetaProtected=pamirs 会在启动时,往redis里写入数据 private static final String META_PROTECTED_KEY = “pamirs:check:meta-protected”; private void writeMetaProtected(String metaProtected) { stringRedisTemplate.opsForValue().set(META_PROTECTED_KEY, metaProtected); } 如果同时又设置 pamirs.data.distribution.session.ownSign则会报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 处理逻辑如下 看redis是否启用保护标识的值 获取pamirs.distribution.session.ownSign配置 没有启动参数 且redis没有值,则retrun 如果有启动参数且配置了ownSign,报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 如果有启动参数且 redis没有值或启动参数设置 -P metaForceProtected,则写入redis 如果有启动参数, 且启动参数跟redis值不同,则报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 如果没有启动参数且redis有值,但没有配置ownSign 报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 核心代码如下MetadataProtectedChecker public void process(AppLifecycleCommand command, Set<String> runModules, List<ModuleDefinition> installModules, List<ModuleDefinition> upgradeModules, List<ModuleDefinition> reloadModules) { String currentMetaProtected = stringRedisTemplate.opsForValue().get(META_PROTECTED_KEY); String metaProtected = getMetaProtected(); boolean hasCurrentMetaProtected = StringUtils.isNotBlank(currentMetaProtected); boolean hasMetaProtected = StringUtils.isNotBlank(metaProtected); if (!hasCurrentMetaProtected && !hasMetaProtected) { return; } if (hasMetaProtected) { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { // 如果有启动参数且配置了ownSign throw new UnsupportedOperationException(“在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign]”); } if (!hasCurrentMetaProtected || isForceProtected()) { writeMetaProtected(metaProtected); } else if (!metaProtected.equals(currentMetaProtected)) { // 如果有启动参数, 且启动参数跟redis值不同 throw unsupportedLocalOperation(); } } else { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { return; } // 没有启动参数且redis有值,但没有配置ownSign 报错 throw unsupportedLocalOperation(); } } 取ownSign方式 看header是否有ownSign这个标识 header没有,则从配置里取,并放到header里 ownSign的获取核心代码 CdDistributionSessionFillOwnSignApi @Override public String getCdOwnSign() { String cdOwnSign = null; // 看header是否有ownSign这个标识…

    2024年9月12日
    1.3K00
  • 如何改变调度策略,让Schedule独立执行线程

    schedule里,相同的taskType跑多个业务任务,如果其中一个任务大量重试占满了调度线程,会影响别的业务任务及时被执行,如下面截图中,taskType用的是平台内置的常量,这个常量会被其他任务也使用,如果当前任务出现了异常占用了这个taskType的所有线程,那么这个taskType下面的其他任务就会被阻塞延后执行。应该给需要业务及时性的任务单独建立自定义的taskType,这样每个taskType的线程就是独立的,A任务异常不会影响B任务的执行。 1、后台创建task type相关的类,继承BaseScheduleNoTransactionTask,要加springbean的注解,参考:task type建议使用类名 2、提交任务的时候,设置tasktype为步骤1的TaskType 3、控制台新增策略和任务bean名称为步骤1的spring beanName,任务名称 $xxx,右边的占位符内容为yml里面配置的ownSign字段任务的名称也是步骤1的 spring beanName 4、配置完成后,控制台启动任务,就可以测试了

    2024年2月20日
    86700
  • 查询时自定义排序字段和排序规则

    指定字段排序 平台默认排序字段,参考IdModel,按创建时间和ID倒序(ordering = "createDate DESC, id DESC") 方法1:模型指定排序 模型定义增加排序字段。@Model.Advanced(ordering = "xxxxx DESC, yyyy DESC") @Model.model(PetShop.MODEL_MODEL) @Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"}) @Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd") @Model.Advanced(ordering = "createDate DESC") public class PetShop extends AbstractDemoIdModel { public static final String MODEL_MODEL="demo.PetShop"; // ………… } 方法2:Page查询中可以自定排序规则 API参考 pro.shushi.pamirs.meta.api.dto.condition.Pagination#orderBy public <G, R> Pagination<T> orderBy(SortDirectionEnum direction, Getter<G, R> getter) { if (null == getSort()) { setSort(new Sort()); } getSort().addOrder(direction, getter); return this; } 具体示例 @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShop> queryPage(Pagination<PetShop> page, IWrapper<PetShop> queryWrapper){ page.orderBy(SortDirectionEnum.DESC, PetShop::getCreateDate); page = new PetShop().queryPage(page, queryWrapper); return page; } 方法3:查询的wapper中指定 API参考:pro.shushi.pamirs.framework.connectors.data.sql.AbstractWrapper#orderBy @Override public Children orderBy(boolean condition, boolean isAsc, R… columns) { if (ArrayUtils.isEmpty(columns)) { return typedThis; } SqlKeyword mode = isAsc ? ASC : DESC; for (R column : columns) { doIt(condition, ORDER_BY, columnToString(column), mode); } return typedThis; } 具体示例 public List<PetShop> queryList(String name) { List<PetShop> petShops = Models.origin().queryListByWrapper( Pops.<PetShop>lambdaQuery().from(PetShop.MODEL_MODEL) .orderBy(true, true, PetShop::getCreateDate) .orderBy(true, true, PetShop::getId) .like(PetShop::getShopName, name)); return petShops; } 设置查询不排序 方法1:关闭平台默认排序字段,设置模型的ordering,改成:ordering = "1=1" 模型定义增加排序字段。@Model.Advanced(ordering = "1=1") @Model.model(PetShop.MODEL_MODEL) @Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"}) @Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd") @Model.Advanced(ordering =…

    2024年5月25日
    1.5K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00

Leave a Reply

登录后才能评论