模型字段之序列化方式

本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。

字段序列化方式说明

序列化方式 说明 备注
JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项
DOT 点拼接集合元素
COMMA 逗号拼接集合元素
BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断

字段序列化方式举例

1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。
2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。

@Model.model(PetItem.MODEL_MODEL)
@Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"})
public class PetItem  extends AbstractDemoCodeModel{

    public static final String MODEL_MODEL="demo.PetItem";

    @Field(displayName = "品种")
    @Field.many2one
    @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"})
    private PetType type;

    @Field(displayName = "品种类型",invisible = true)
    private Long typeId;

    @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<PetItemDetail> petItemDetails;

    @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<String> tags;
}

字段序列化注意点

  1. 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。
  2. 使用Field#serialize属性指定序列化方式,默认为JSON。
  3. 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录

注册自己的序列化器

注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。

package pro.shushi.pamirs.framework.compute.serialize;

import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;
import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer;
import pro.shushi.pamirs.meta.common.constants.CharacterConstants;
import pro.shushi.pamirs.meta.enmu.SerializeEnum;
import pro.shushi.pamirs.meta.util.TypeUtils;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * 点表达式序列生成处理器实现
 * @author shushi@shushi.pro
 * @version 1.0.0
 */
@SuppressWarnings("rawtypes")
@Slf4j
@Component
public class DotSerializeProcessor implements Serializer<Object, String> {

    @Override
    public String serialize(String ltype, Object value) {
        if (null == value) {
            return null;
        }
        if (List.class.isAssignableFrom(value.getClass())) {
            return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT);
        } else {
            return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT);
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public Object deserialize(String ltype, String ltypeT, String value, String format) {
        if (null == value) {
            return null;
        }
        String[] dots = value.split(CharacterConstants.SEPARATOR_ESCAPE_DOT);
        List list = new ArrayList();
        for (String dot : dots) {
            Object object = TypeUtils.valueOfPrimary(ltypeT, dot, null);
            list.add(object);
        }
        return list;
    }

    @Override
    public String type() {
        return SerializeEnum.DOT.value();
    }
}

字段默认值的反序列化

用@Field.defaultValue注解在字段上配置defaultValue属性时,将根据字段的Ttype类型及字段的Ltype等类型属性,自动进行反序列化。包括但不限于以下几种情况:

  • OBJ、STRING、TEXT、HTML——保持不变
  • BINARY、INTEGER——转换为整数
  • FLOAT、MONEY——转换为浮点数
  • DATETIME、DATE、TIME、YEAR——根据Field.Date#format属性决定反序列化日期格式
  • BOOLEAN——仅允许null、true、false
  • ENUM——使用value进行匹配

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11389.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月24日 pm2:53
下一篇 2024年5月25日 pm3:40

相关推荐

  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    2.0K00
  • 平台配置日志输出和推送到APM与LogStash

    场景描述 目前设计器镜像启动后日志文件为out.log,是启动脚本中定向输出了(>>)out.log文件。实际项目可能: 日志输出到特定目录的特定文件名中 指定以日志保留策略(单个文件大小和文件保留个数) 日志输出到APM工具中(如skywalking) 日志推送到LogStash 日志自定义输出 不定向输出,采用自己配置的方式,与标准的SpringBoot工程配置日志一样。两种方式(都是Spring提供的方式): 方式一 bootstrap.yml 里面可以按profiles指定logback的配置文件,具体文件名和文件输入在logback里面进行配置,跟通用的logback配置一致. 例如: logging: config: classpath:logback-pre.xml 方式二 resources的根目录,直接配置 logback-spring.xml, 启动会自动加载。 日志自定义场景 配置日志推送到LogStash <!–配置日志推送到LogStash–> <contextListener class="pro.shushi.pamirs.demo.core.config.DemoLogbackFiledConfig"/> <appender name="LogStash" class="net.logstash.logback.appender.LogstashTcpSocketAppender"> <destination>127.0.0.1:4560</destination> <!– encoder必须配置,有多种可选 –> <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder"> <!– SkyWalking插件, log加tid–> <provider class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.logstash.TraceIdJsonProvider" /> <!–在生成的json中会加这些字段–> <customFields> {"app.name":"pamirs-demo", "app.type":"Microservice", "platform":"pamirs", "env":"dev"} </customFields> <timeZone>Asia/Shanghai</timeZone> <writeVersionAsInteger>true</writeVersionAsInteger> <providers> <pattern> <pattern> <!–动态的变量–> { "ip": "%{ip}", "server.name": "%{server.name}", "logger_name": "%logger" } </pattern> </pattern> </providers> </encoder> </appender> skywalking的日志rpc上传 <!– skywalking的日志rpc上传 –> <appender name="SkyWalkingLogs" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender"> <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder"> <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout"> <Pattern>${CONSOLE_LOG_PATTERN}</Pattern> </layout> </encoder> </appender> 完整的代码示例 Logback自定义字段 package pro.shushi.pamirs.demo.core.config; import ch.qos.logback.classic.Level; import ch.qos.logback.classic.Logger; import ch.qos.logback.classic.LoggerContext; import ch.qos.logback.classic.spi.LoggerContextListener; import ch.qos.logback.core.Context; import ch.qos.logback.core.spi.ContextAwareBase; import ch.qos.logback.core.spi.LifeCycle; import java.net.InetAddress; import java.net.UnknownHostException; /** * Logback自定义字段 * * @author wx@shushi.pro * @date 2024/4/17 */ public class DemoLogbackFiledConfig extends ContextAwareBase implements LoggerContextListener, LifeCycle { private boolean started = false; @Override public boolean isResetResistant() { return false; } @Override public void onStart(LoggerContext loggerContext) { } @Override public void onReset(LoggerContext loggerContext) { } @Override public void onStop(LoggerContext loggerContext) { } @Override public void onLevelChange(Logger logger, Level level) { } @Override public void start() { if (started) { return; } Context context = getContext();…

    2024年5月18日
    1.5K00
  • Oinone引入搜索引擎(增强模型)

    场景描述 在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch; 使用前你应该 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/ 有一个可用的ElasticSearch环境(本地项目能引用到) 前置约束 增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。 项目引入搜索步骤 1、boot工程加入相关依赖包 boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本 boot工程加入pamris-channel的工程依赖 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-core</artifactId> </dependency> 2、api工程加入相关依赖包 在XXX-api中增加入pamirs-channel-api的依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-api</artifactId> </dependency> 3、yml文件配置 在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致 pamirs: record: sql: #改成自己本地路径(或服务器路径) store: /Users/oinone/record boot: modules: – channel ## 确保也安装了sql_record – sql_record channel: packages: # 增强模型扫描包配置 – com.xxx.xxx elastic: url: 127.0.0.1:9200 4、项目的模块增加模块依赖 XXXModule增加对ChannelModule的依赖 @Module(dependencies = {ChannelModule.MODULE_MODULE}) 5、增加增强模型(举例) package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; } 6、重启系统看效果 1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据 2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作 个性化dump逻辑 通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。 重写ShardingModelEnhance模型的synchronize方法 重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】 package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.List; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; @Field(displayName = "nick") private String nick;…

    2024年5月14日
    1.8K00
  • IWrapper、QueryWrapper和LambdaQueryWrapper使用

    条件更新updateByWrapper 通常我们在更新的时候new一个对象出来在去更新,减少更新的字段 Integer update = new DemoUser().updateByWrapper(new DemoUser().setFirstLogin(Boolean.FALSE), Pops.<DemoUser>lambdaUpdate().from(DemoUser.MODEL_MODEL).eq(IdModel::getId, userId) 使用基础模型的updateById方法更新指定字段的方法: new 一下update对象出来,更新这个对象。 WorkflowUserTask userTaskUp = new WorkflowUserTask(); userTaskUp.setId(userTask.getId()); userTaskUp.setNodeContext(json); userTaskUp.updateById(); 条件删除updateByWrapper public List<T> delete(List<T> data) { List<Long> petTypeIdList = new ArrayList(); for(T item:data){ petTypeIdList.add(item.getId()); } Models.data().deleteByWrapper(Pops.<PetType>lambdaQuery().from(PetType.MODEL_MODEL).in(PetType::getId,petTypeIdList)); return data; } 构造条件查询数据 示例1: LambdaQueryWrapper拼接查询条件 private void queryPetShops() { LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery(); query.from(PetShop.MODEL_MODEL); query.setSortable(Boolean.FALSE); query.orderBy(true, true, PetShop::getId); List<PetShop> petShops2 = new PetShop().queryList(query); System.out.printf(petShops2.size() + ""); } 示例2: IWrapper拼接查询条件 private void queryPetShops() { IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery() .from(PetShop.MODEL_MODEL).eq(PetShop::getId,1L); List<PetShop> petShops4 = new PetShop().queryList(wrapper); System.out.printf(petShops4.size() + ""); } 示例3: QueryWrapper拼接查询条件 private void queryPetShops() { //使用Lambda获取字段名,防止后面改字段名漏改 String nameField = LambdaUtil.fetchFieldName(PetTalent::getName); //使用Lambda获取Clumon名,防止后面改字段名漏改 String nameColumn = PStringUtils.fieldName2Column(nameField); QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL) .eq(nameColumn, "test"); List<PetShop> petShops5 = new PetShop().queryList(wrapper2); System.out.printf(petShops5.size() + ""); } IWrapper转为LambdaQueryWrapper @Function.Advanced(type= FunctionTypeEnum.QUERY) @Function.fun(FunctionConstants.queryPage) @Function(openLevel = {FunctionOpenEnum.API}) public Pagination<PetShopProxy> queryPage(Pagination<PetShopProxy> page, IWrapper<PetShopProxy> queryWrapper) { LambdaQueryWrapper<PetShopProxy> wrapper = ((QueryWrapper<PetShopProxy>) queryWrapper).lambda(); // 非存储字段从QueryData中获取 Map<String, Object> queryData = queryWrapper.getQueryData(); if (null != queryData && !queryData.isEmpty()) { String codes = (String) queryData.get("codes"); if (org.apache.commons.lang3.StringUtils.isNotBlank(codes)) { wrapper.in(PetShopProxy::getCode, codes.split(",")); } } return new PetShopProxy().queryPage(page, wrapper); }

    2024年5月25日
    1.8K00

Leave a Reply

登录后才能评论