模型字段之序列化方式

本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。

字段序列化方式说明

序列化方式 说明 备注
JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项
DOT 点拼接集合元素
COMMA 逗号拼接集合元素
BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断

字段序列化方式举例

1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。
2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。

@Model.model(PetItem.MODEL_MODEL)
@Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"})
public class PetItem  extends AbstractDemoCodeModel{

    public static final String MODEL_MODEL="demo.PetItem";

    @Field(displayName = "品种")
    @Field.many2one
    @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"})
    private PetType type;

    @Field(displayName = "品种类型",invisible = true)
    private Long typeId;

    @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<PetItemDetail> petItemDetails;

    @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<String> tags;
}

字段序列化注意点

  1. 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。
  2. 使用Field#serialize属性指定序列化方式,默认为JSON。
  3. 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录

注册自己的序列化器

注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。

package pro.shushi.pamirs.framework.compute.serialize;

import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;
import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer;
import pro.shushi.pamirs.meta.common.constants.CharacterConstants;
import pro.shushi.pamirs.meta.enmu.SerializeEnum;
import pro.shushi.pamirs.meta.util.TypeUtils;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * 点表达式序列生成处理器实现
 * @author shushi@shushi.pro
 * @version 1.0.0
 */
@SuppressWarnings("rawtypes")
@Slf4j
@Component
public class DotSerializeProcessor implements Serializer<Object, String> {

    @Override
    public String serialize(String ltype, Object value) {
        if (null == value) {
            return null;
        }
        if (List.class.isAssignableFrom(value.getClass())) {
            return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT);
        } else {
            return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT);
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public Object deserialize(String ltype, String ltypeT, String value, String format) {
        if (null == value) {
            return null;
        }
        String[] dots = value.split(CharacterConstants.SEPARATOR_ESCAPE_DOT);
        List list = new ArrayList();
        for (String dot : dots) {
            Object object = TypeUtils.valueOfPrimary(ltypeT, dot, null);
            list.add(object);
        }
        return list;
    }

    @Override
    public String type() {
        return SerializeEnum.DOT.value();
    }
}

字段默认值的反序列化

用@Field.defaultValue注解在字段上配置defaultValue属性时,将根据字段的Ttype类型及字段的Ltype等类型属性,自动进行反序列化。包括但不限于以下几种情况:

  • OBJ、STRING、TEXT、HTML——保持不变
  • BINARY、INTEGER——转换为整数
  • FLOAT、MONEY——转换为浮点数
  • DATETIME、DATE、TIME、YEAR——根据Field.Date#format属性决定反序列化日期格式
  • BOOLEAN——仅允许null、true、false
  • ENUM——使用value进行匹配

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11389.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月24日 pm2:53
下一篇 2024年5月25日 pm3:40

相关推荐

  • 如何自定义SQL(Mapper)语句

    场景描述 在实际业务场景中,存在复杂SQL的情况,具体表现为: 单表单SQL满足不了的情况下 有复杂的Join关系或者子查询 复杂SQL的逻辑通过程序逻辑难以实现或实现代价较大 在此情况下,通过原生的mybatis/mybatis-plus, 自定义Mapper的方式实现业务功能 1、编写所需的Mapper SQL Mapper写法无限制,与使用原生的mybaits/mybaits-plus用法一样; Mapper(DAO)和SQL可以写在一个文件中,也分开写在两个文件中。 package pro.shushi.pamirs.demo.core.map; import org.apache.ibatis.annotations.Mapper; import org.apache.ibatis.annotations.Param; import org.apache.ibatis.annotations.Select; import java.util.List; import java.util.Map; @Mapper public interface DemoItemMapper { @Select("<script>select sum(item_price) as itemPrice,sum(inventory_quantity) as inventoryQuantity,categoryId from ${demoItemTable} as core_demo_item ${where} group by category_id</script>") List<Map<String, Object>> groupByCategoryId(@Param("demoItemTable") String pamirsUserTable, @Param("where") String where); } 2.调用mapper 调用Mapper代码示例 package pro.shushi.pamirs.demo.core.map; import com.google.api.client.util.Lists; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.framework.connectors.data.api.datasource.DsHintApi; import pro.shushi.pamirs.meta.api.core.orm.convert.DataConverter; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils; import java.util.List; import java.util.Map; @Component public class DemoItemDAO { public List<DemoItem> customSqlDemoItem(){ try (DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL)) { String demoItemTable = PamirsSession.getContext().getModelCache().get(DemoItem.MODEL_MODEL).getTable(); DemoItemMapper demoItemMapper = BeanDefinitionUtils.getBean(DemoItemMapper.class); String where = " where status = 'ACTIVE'"; List<Map<String, Object>> dataList = demoItemMapper.groupByCategoryId(demoItemTable,where); DataConverter persistenceDataConverter = BeanDefinitionUtils.getBean(DataConverter.class); return persistenceDataConverter.out(DemoItem.MODEL_MODEL, dataList); } return Lists.newArrayList(); } } 调用Mapper一些说明 启动类需要配置扫描包MapperScan @MapperScan(value = "pro.shushi", annotationClass = Mapper.class) @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, FreeMarkerAutoConfiguration.class}) public class DemoApplication { 调用Mapper接口的时候,需要指定数据源;即上述示例代码中的 DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL), 实际代码中使用 try-with-resources语法。 从Mapper返回的结果中获取数据 如果SQL Mapper中已定义了resultMap,调用Mapper(DAO)返回的就是Java对象 如果Mapper返回的是Map<String, Object>,则通过 DataConverter.out进行转化,参考上面的示例 其他参考:Oinone连接外部数据源方案:https://doc.oinone.top/backend/4562.html

    2023年11月27日
    1.2K00
  • Nacos做为注册中心:如何调用其他系统的SpringCloud服务?

    Oinone项目引入Nacos作为注册中心,调用外部的SpringCloud服务 Nacos可以做为注册中心,提供给Dubbo和SpringCloud等微服务框架使用。 目前Oinone的底层使用的是Dubbo进行微服务的默认协议调用,但是我们项目如果存在需要调用其他系统提供的SpringCloud服务,Oinone其实并没有限制大家去这么写代码。 可以参考Nacos或SpringCloud的官方文档,只要不存在Jar包冲突等场景,很多的扩展其实大家都可以使用。 注意!!!Nacos、SpringCloud、SpringCloudAlibaba是有依赖版本严格要求的:点击查看 具体示例: 一、项目中增加依赖 主pom引入兼容的版本: <dependencyManagement> <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-alibaba-dependencies</artifactId> <version>2.2.7.RELEASE</version> <!– 目前兼容的版本 –> <type>pom</type> <scope>import</scope> </dependency> </dependencyManagement> 使用模块的pom引入依赖: <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId> </dependency> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-openfeign</artifactId> </dependency> 二、 配置 application.yml spring: cloud: nacos: discovery: server-addr: localhost:8848 username: nacos password: nacos 三、启动类添加注解 @EnableDiscoveryClient @EnableFeignClients public class NacosConsumerApplication { public static void main(String[] args) { SpringApplication.run(NacosConsumerApplication.class, args); } } 四、验证 创建 Feign Client 接口 import org.springframework.cloud.openfeign.FeignClient; import org.springframework.web.bind.annotation.GetMapping; @FeignClient(name = "nacos-demo") // 指定目标服务的名称 public interface ProviderClient { @GetMapping("/hello") String hello(); } 创建 Controller 调用 Feign Client @RestController public class ConsumerController { private final ProviderClient providerClient; public ConsumerController(ProviderClient providerClient) { this.providerClient = providerClient; } @GetMapping("/hello") public String hello() { return providerClient.hello(); } } 在浏览器中访问 http://localhost:8082/hello你应该会看到服务提供者返回的响应。

    2024年6月4日
    1.7K00
  • 【KDB】后端部署使用Kingbase数据库(人大金仓/电科金仓)

    KDB数据库配置 驱动配置 Maven配置 点击查看官方驱动说明 PS:官方驱动说明中的9.0.0版本目前并未推送至公共仓库,因此使用8.6.0版本替代。 <kdb.version>8.6.0</kdb.version> <dependency> <groupId>cn.com.kingbase</groupId> <artifactId>kingbase8</artifactId> <version>${kdb.version}</version> </dependency> 离线驱动下载 kingbase8-8.6.0.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.kingbase8.Driver url: jdbc:kingbase8://127.0.0.1:4321/pamirs?currentSchema=base&autosave=always&cleanupSavepoints=true username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.PGValidConnectionChecker PS:validConnectionCheckerClassName配置非常重要,连接存活检查是连接池可以保持连接的重要配置。Druid连接池可以自动识别大多数的数据库类型,由于jdbc:kingbase8协议属于非内置识别的类型,因此需要手动配置。 连接url配置 点击查看官方JDBC连接配置说明 url格式 jdbc:kingbase8://${host}:${port}/${database}?currentSchema=${schema}&autosave=always&cleanupSavepoints=true 在jdbc连接配置时,${database}和${schema}必须配置,不可缺省。autosave=always、cleanupSavepoints=true属于必须配置的事务参数,否则事务回滚行为与其他数据库不一致,会导致部分操作失败。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: KDB version: 9 major-version: V009R001C001B0030 pamirs: type: KDB version: 9 major-version: V009R001C001B0030 数据库版本 type version majorVersion V009R001C001B0030 KDB 9 V009R001C001B0030 V008R006C008B0020 KDB 9 V009R001C001B0030 PS:由于方言开发环境为V009R001C001B0030版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言与PostgreSQL数据库并无明显差异,Kingbase数据库可以直接使用PostgreSQL数据库方言。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint KDB数据库关键参数检查 PS:以下参数为Oinone平台接入KDB时使用的数据库参数,参数不一致时可尝试启动。 数据库模式 推荐配置:DB_MODE=oracle 数据库安装/初始化时配置 是否大小写敏感 推荐配置:enable_ci=off 是否启用语句级回滚 推荐配置:ora_statement_level_rollback = off show ora_statement_level_rollback; set ora_statement_level_rollback=off; 此参数在Oinone平台接入时使用的版本中未体现出应有的效果。从官方提供的文档来看,此参数与数据库连接串上的autosave=always&cleanupSavepoints=true配置结果应该是一致的,由于此参数配置无效,因此在数据库连接串上必须指定这两个参数。 Oinone平台在最初开发时使用的是基于mysql数据库的事务特性,即不支持语句级回滚的事务行为。因此,为了保证Oinone平台功能正常,需要使得事务行为保持一致。 如不一致,则可能出现某些功能无法正常使用的情况。如:流程设计器首次发布定时触发的工作流时会出现报错;导入/导出任务出现异常无法正常更新任务状态等。 是否将空字符串视为NULL 推荐配置:ora_input_emptystr_isnull = off show ora_input_emptystr_isnull; set ora_input_emptystr_isnull=off; KDB数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is…

    2024年10月29日
    1.0K00
  • DsHint(指定数据源)和BatchSizeHint(指定批次数量)

    概述和使用场景 DsHintApi ,强制指定数据源, BatchSizeHintApi ,强制指定查询批量数量 API定义 DsHintApi public static DsHintApi model(String model/**模型编码*/) { // 具体实现 } public DsHintApi(Object dsKey/***数据源名称*/) { // 具体实现 } BatchSizeHintApi public static BatchSizeHintApi use(Integer batchSize) { // 具体实现 } 使用示例 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱 2、DsHintApi使用示例包裹在try里面的所有查询都会强制使用指定的数据源 // 使用方式1: try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 使用方式2: try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } 3、BatchSizeHintApi使用示例包裹在try里面的所有查询都会按照指定的batchSize进行查询 // 查询指定每次查询500跳 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); }

    2024年5月18日
    1.1K00
  • 如何自定义Excel导入功能

    介绍 在平台提供的默认导入功能无法满足业务需求的时候,我们可以自定义导入功能,以满足业务中个性化的需求。 功能示例 下面以导入文件的时候加入发布人的字段作为示例讲解。 继承平台的导入任务模型,加上需要在导入的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelImportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemImportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导入任务") public class DemoItemImportTask extends ExcelImportTask { public static final String MODEL_MODEL = "demo.DemoItemImportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导入弹窗视图的数据初始化方法和导入提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.base.resource.PamirsFile; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.action.ExcelImportTaskAction; import pro.shushi.pamirs.file.api.config.FileProperties; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemImportTask.MODEL_MODEL) public class DemoItemExcelImportTaskAction extends ExcelImportTaskAction { public DemoItemExcelImportTaskAction(FileProperties fileProperties, ExcelFileService excelFileService) { super(fileProperties, excelFileService); } @Action(displayName = "导入", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemImportTask createImportTask(DemoItemImportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } Object fileId = data.get_d().get("fileId"); if (fileId != null) { PamirsFile pamirsFile = new PamirsFile().queryById(Long.valueOf(fileId.toString())); data.setFile(pamirsFile); } super.createImportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemImportTask construct(DemoItemImportTask data) { data.construct(); return data; } } 编写导入的单行数据处理逻辑,此处可以拿到导入弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑,此处演示代码就是将导入后的商品的发布人都设置为自定义导入视图填的发布人信息 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.demo.api.service.DemoItemService; import pro.shushi.pamirs.file.api.context.ExcelImportContext; import pro.shushi.pamirs.file.api.extpoint.AbstractExcelImportDataExtPointImpl; import pro.shushi.pamirs.file.api.extpoint.ExcelImportDataExtPoint;…

    2023年11月22日
    1.1K00

Leave a Reply

登录后才能评论