模型字段之序列化方式

本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。

字段序列化方式说明

序列化方式 说明 备注
JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项
DOT 点拼接集合元素
COMMA 逗号拼接集合元素
BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断

字段序列化方式举例

1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。
2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。

@Model.model(PetItem.MODEL_MODEL)
@Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"})
public class PetItem  extends AbstractDemoCodeModel{

    public static final String MODEL_MODEL="demo.PetItem";

    @Field(displayName = "品种")
    @Field.many2one
    @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"})
    private PetType type;

    @Field(displayName = "品种类型",invisible = true)
    private Long typeId;

    @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<PetItemDetail> petItemDetails;

    @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<String> tags;
}

字段序列化注意点

  1. 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。
  2. 使用Field#serialize属性指定序列化方式,默认为JSON。
  3. 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录

注册自己的序列化器

注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。

package pro.shushi.pamirs.framework.compute.serialize;

import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;
import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer;
import pro.shushi.pamirs.meta.common.constants.CharacterConstants;
import pro.shushi.pamirs.meta.enmu.SerializeEnum;
import pro.shushi.pamirs.meta.util.TypeUtils;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * 点表达式序列生成处理器实现
 * @author shushi@shushi.pro
 * @version 1.0.0
 */
@SuppressWarnings("rawtypes")
@Slf4j
@Component
public class DotSerializeProcessor implements Serializer<Object, String> {

    @Override
    public String serialize(String ltype, Object value) {
        if (null == value) {
            return null;
        }
        if (List.class.isAssignableFrom(value.getClass())) {
            return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT);
        } else {
            return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT);
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public Object deserialize(String ltype, String ltypeT, String value, String format) {
        if (null == value) {
            return null;
        }
        String[] dots = value.split(CharacterConstants.SEPARATOR_ESCAPE_DOT);
        List list = new ArrayList();
        for (String dot : dots) {
            Object object = TypeUtils.valueOfPrimary(ltypeT, dot, null);
            list.add(object);
        }
        return list;
    }

    @Override
    public String type() {
        return SerializeEnum.DOT.value();
    }
}

字段默认值的反序列化

用@Field.defaultValue注解在字段上配置defaultValue属性时,将根据字段的Ttype类型及字段的Ltype等类型属性,自动进行反序列化。包括但不限于以下几种情况:

  • OBJ、STRING、TEXT、HTML——保持不变
  • BINARY、INTEGER——转换为整数
  • FLOAT、MONEY——转换为浮点数
  • DATETIME、DATE、TIME、YEAR——根据Field.Date#format属性决定反序列化日期格式
  • BOOLEAN——仅允许null、true、false
  • ENUM——使用value进行匹配

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11389.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月24日 pm2:53
下一篇 2024年5月25日 pm3:40

相关推荐

  • 字段类型之关系描述的特殊场景(常量关联)

    场景概述 【字段类型之关系与引用】一文中已经描述了各种关系字段的常规写法,还有一些特殊场景如:关系映射中存在常量,或者M2M中间表是大于两个字段构成。 场景描述 1、PetTalent模型增加talentType字段2、PetItem与PetTalent的多对多关系增加talentType(达人类型),3、PetItemRelPetTalent中间表维护petItemId、petTalentId以及talentType,PetDogItem和PetCatItem分别重写petTalents字段,关系中增加常量描述。示意图如下: 实际操作步骤 Step1 新增 TalentTypeEnum package pro.shushi.pamirs.demo.api.enumeration; import pro.shushi.pamirs.meta.annotation.Dict; import pro.shushi.pamirs.meta.common.enmu.BaseEnum; @Dict(dictionary = TalentTypeEnum.DICTIONARY,displayName = "达人类型") public class TalentTypeEnum extends BaseEnum<TalentTypeEnum,Integer> { public static final String DICTIONARY ="demo.TalentTypeEnum"; public final static TalentTypeEnum DOG =create("DOG",1,"狗达人","狗达人"); public final static TalentTypeEnum CAT =create("CAT",2,"猫达人","猫达人"); } Step2 PetTalent模型增加talentType字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.demo.api.enumeration.TalentTypeEnum; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(PetTalent.MODEL_MODEL) @Model(displayName = "宠物达人",summary="宠物达人",labelFields ={"name"}) public class PetTalent extends AbstractDemoIdModel{ public static final String MODEL_MODEL="demo.PetTalent"; @Field(displayName = "达人") private String name; @Field(displayName = "达人类型") private TalentTypeEnum talentType; } Step3 修改PetItem的petTalents字段,在关系描述中增加talentType(达人类型) @Field.many2many(relationFields = {"petItemId"},referenceFields = {"petTalentId","talentType"},through = PetItemRelPetTalent.MODEL_MODEL ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id","talentType"}) @Field(displayName = "推荐达人",summary = "推荐该商品的达人们") private List<PetTalent> petTalents; Step4 PetDogItem增加petTalents字段,重写父类PetItem的关系描述 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Field(displayName = "推荐达人") @Field.many2many( through = "PetItemRelPetTalent", relationFields = {"petItemId"}, referenceFields = {"petTalentId","talentType"} ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id", "#1#"}, domain = " talentType == DOG") private List<PetTalent> petTalents; Step5 PetCatItem增加petTalents字段,重写父类PetItem的关系描述 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Field(displayName = "推荐达人") @Field.many2many( through = "PetItemRelPetTalent", relationFields = {"petItemId"}, referenceFields = {"petTalentId","talentType"} ) @Field.Relation(relationFields = {"id"}, referenceFields = {"id", "#2#"}, domain = " talentType == CAT") private List<PetTalent> petTalents; Step6 PetCatItem增加petTalents字段,many2one关系示例 talentType配置为常量,填入枚举的值 增加domain描述用户页面选择的时候自动过滤出特定类型的达人,RSQL用枚举的name @Model.model(PetPet.MODEL_MODEL) @Model(displayName…

    2024年5月25日
    1.6K00
  • Oinone如何支持构建分布式项目

    分布式调用下的[强制]约束 1、[强制]分布式调用情况下base库和redis需共用;2、[强制]如果环境有设计器,设计器的base库和redis保持一致也需与项目中的保持一致;3、[强制]相同base库下,不同应用的相同模块的数据源需保持一致;4、[强制]项目中需引入分布式缓存包。参考下文的分布式包依赖 分布式支持 1、分布式包依赖 1) 父pom的依赖管理中先加入pamirs-distribution的依赖 <dependency> <groupId>pro.shushi.pamirs</groupId> <artifactId>pamirs-distribution</artifactId> <version>${pamirs.distribution.version}</version> <type>pom</type> <scope>import</scope> </dependency> 2) 启动的boot工程中增加pamirs-distribution相关包 <!– 分布式服务发布 –> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-faas</artifactId> </dependency> <!– 分布式元数据缓存 –> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-session</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.distribution</groupId> <artifactId>pamirs-distribution-gateway</artifactId> </dependency> 3)启动工程的Application中增加类注解@EnableDubbo @EnableDubbo public class XXXStdApplication { public static void main(String[] args) throws IOException { StopWatch stopWatch = new StopWatch(); stopWatch.start(); // ……………………………… log.info("XXXX Application loading…"); } } 2、修改bootstrap.yml文件 注意序列化方式:serialization: pamirs 以下只是一个示例(zk为注册中心),注册中心支持zk和Nacos;Nacos作为注册中心参考:https://doc.oinone.top/kai-fa-shi-jian/5835.html spring: profiles: active: dev application: name: pamirs-demo cloud: service-registry: auto-registration: enabled: false pamirs: default: environment-check: true tenant-check: true — spring: profiles: dev cloud: service-registry: auto-registration: enabled: false config: enabled: false uri: http://127.0.0.1:7001 label: master profile: dev nacos: server-addr: http://127.0.0.1:8848 discovery: enabled: false namespace: prefix: application file-extension: yml config: enabled: false namespace: prefix: application file-extension: yml dubbo: application: name: pamirs-demo version: 1.0.0 registry: address: zookeeper://127.0.0.1:2181 protocol: name: dubbo port: -1 serialization: pamirs scan: base-packages: pro.shushi cloud: subscribed-services: metadata-report: disabled: true 3、模块启动的最⼩集 pamirs: boot: init: true sync: true modules: – base – sequence – 业务工程的Module 4、业务模型间的依赖关系 服务调用方(即Client端),在启动yml中modules不安装服务提供方的Module 服务调用方(即Client端),项目的pom中只依赖服务提供方的API(即模型和API的定义) 服务调用方(即Client端),项目模块定义(即模型Module定义),dependencies中增加服务提供方的Modeule. 如下面示例代码中的FileModule @Module( name = DemoModule.MODULE_NAME, displayName = "oinoneDemo工程", version = "1.0.0", dependencies = {ModuleConstants.MODULE_BASE, CommonModule.MODULE_MODULE, FileModule.MODULE_MODULE, SecondModule.MODULE_MODULE/**服务提供方的模块定义*/ } )…

    2024年2月20日
    1.1K00
  • 技术精要:数据导出与固化实用指南

    数据被认为是企业发展和决策的重要资产。随着业务的不断发展和数据量的不断增加,企业通常需要将数据从不同的源头导出,并将其固化到产品中,以便进行进一步的分析、处理和利用。数据导出与固化的过程涉及到数据的提取、清洗、整合和存储,是确保数据长期有效性和可用性的关键步骤。 了解数据导出与固化的流程和方法对于企业具有重要意义。通过有效的数据导出和固化,企业可以更好地管理和利用数据资源,提升决策的准确性和效率,实现业务的持续发展和创新。本次讨论将重点探讨数据导出与固化的流程和关键步骤,帮助参与者深入了解如何将数据从导出到产品中,为企业数据管理和应用提供有力支持。 1. 数据导出与固化:将数据从导出到产品中的流程 1.1. pom依赖: <dependency> <groupId>pro.shushi.pamirs.metadata.manager</groupId> <artifactId>pamirs-metadata-manager</artifactId> </dependency> 1.2 将第⼆步下载后的⽂件放⼊项⽬中(注意⽂件放置的位置)。放置⼯程的resources 下⾯。例如: 1.3 项⽬启动过程中,将⽂件中的数据导⼊(通常放在core模型的init包下 ⾯)。⽰例代码: package pro.shushi.pamirs.sys.setting.enmu; import com.google.common.collect.Lists; import org.apache.commons.collections4.CollectionUtils; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCom mand; import pro.shushi.pamirs.boot.common.api.init.LifecycleCompleted AllInit; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.domain.module.ModuleDefinition; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerIn stallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInst allHelper; import java.util.List; import java.util.Map; @Slf4j @Component public class DemoAppMetaInstall implements MetaDataEditor, LifecycleCompletedAllInit { @Autowired private ApplicationContext applicationContext; @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { if (!doImport()) { return; } log.info("[设计器业务元数据导⼊]"); InitializationUtil bizInitializationUtil = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE/ ***改成⾃⼰的Module*/, DemoModule.MODULE_NAME/***改成⾃⼰的 Module*/); DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/meta.json"); log.info("[⾃定义组件元数据导⼊]"); // 写法1: 将组件元数据导⼊到⻚⾯设计器. 只有在安装设计器的 服务中执⾏才有效果 WidgetInstallHelper.mateInitialization(metaMap, "install/widget.json"); // 写法2: 与写法1相同效果 InitializationUtil uiInitializationUtil = InitializationUtil.get(metaMap, "ui_designer", "uiDesigner"); if (uiInitializationUtil != null) { DesignerInstallHelper.mateInitialization(uiInitialization Util, "install/widget.json"); } // 写法3: 业务⼯程和设计器分布式部署,且希望通过业务⼯程导⼊ ⾃定义组件元数据. 业务模块需要依赖⻚⾯设计器模块,然后指定业务模块导 ⼊ DesignerInstallHelper.mateInitialization(bizInitializatio nUtil, "install/widget.json"); } @Override public void process(AppLifecycleCommand command, Map<String, ModuleDefinition> runModuleMap) { if (!doImport()) { return; } log.info("[设计器业务数据导⼊]"); // ⽀持远程调⽤,但是执⾏的⽣命周期必须是 LifecycleCompletedAllInit或之后. 本地如果安装了设计器,则没有要 求 DesignerInstallHelper.bizInitialization("install/ meta.json"); log.info("[⾃定义组件业务数据导⼊]"); // 当开发环境和导⼊环境的⽂件服务不互通时, 可通过指定js和 css的⽂件压缩包,⾃动上传到导⼊环境,并替换导⼊组件数据中的⽂件url // WidgetInstallHelper.bizInitialization("install/ widget.json", "install/widget.zip"); WidgetInstallHelper.bizInitialization("install/ widget.json"); return; } private boolean doImport() { // ⾃定义导⼊判断. 避免⽤于设计的开发环境执⾏导⼊逻辑 String[] envs = applicationContext.getEnvironment().getActiveProfiles(); List<String> envList = Lists.newArrayList(envs); return…

    2024年2月27日
    2.1K00
  • 框架之MessageHub(信息提示)

    框架之信息概述 后端除了可以返回错误信息以外,还可以返回调试、告警、成功、信息等级别的信息给前端。但是默认情况下前端只提示错误信息,可以通过前端的统一配置放开提示级别,有点类似后端的日志级别。 框架之MessageHub 在oinone平台中,我们怎么做到友好的错误提示呢?接下来介绍我们的MessageHub,它为自定义错误提示提供无限的可能。 何时使用 错误提示是用户体验中特别重要的组成部分,大部分的错误体现在整页级别,字段级别,按钮级别。友好的错误提示应该是怎么样的呢?我们假设他是这样的 与用户操作精密契合 当字段输入异常时,错误展示在错误框底部 按钮触发服务时异常,错误展示在按钮底部 区分不同的类型 错误 成功 警告 提示 调试 简洁易懂的错误信息 不同信息类型的举例 package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.PetCatItem; import pro.shushi.pamirs.demo.api.model.PetType; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.api.dto.common.Message; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.InformationLevelEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Model.model(PetType.MODEL_MODEL) @Component public class PetTypeAction { @Action(displayName = "消息",bindingType = ViewTypeEnum.TABLE,contextType = ActionContextTypeEnum.CONTEXT_FREE) public PetType message(PetType data){ PamirsSession.getMessageHub().info("info1"); PamirsSession.getMessageHub().info("info2"); PamirsSession.getMessageHub().error("error1"); PamirsSession.getMessageHub().error("error2"); PamirsSession.getMessageHub().msg(new Message().msg("success1").setLevel(InformationLevelEnum.SUCCESS)); PamirsSession.getMessageHub().msg(new Message().msg("success2").setLevel(InformationLevelEnum.SUCCESS)); PamirsSession.getMessageHub().msg(new Message().msg("debug1").setLevel(InformationLevelEnum.DEBUG)); PamirsSession.getMessageHub().msg(new Message().msg("debug2").setLevel(InformationLevelEnum.DEBUG)); PamirsSession.getMessageHub().msg(new Message().msg("warn1").setLevel(InformationLevelEnum.WARN)); PamirsSession.getMessageHub().msg(new Message().msg("warn2").setLevel(InformationLevelEnum.WARN)); return data; } } 查询运行返回和效果 1)系统提示的返回结果 2)系统提示示例效果

    2024年5月14日
    1.3K00
  • 【KDB】后端部署使用Kingbase数据库(人大金仓/电科金仓)

    KDB数据库配置 驱动配置 Maven配置 点击查看官方驱动说明 PS:官方驱动说明中的9.0.0版本目前并未推送至公共仓库,因此使用8.6.0版本替代。 <kdb.version>8.6.0</kdb.version> <dependency> <groupId>cn.com.kingbase</groupId> <artifactId>kingbase8</artifactId> <version>${kdb.version}</version> </dependency> 离线驱动下载 kingbase8-8.6.0.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.kingbase8.Driver url: jdbc:kingbase8://127.0.0.1:4321/pamirs?currentSchema=base&autosave=always&cleanupSavepoints=true username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true validConnectionCheckerClassName: com.alibaba.druid.pool.vendor.PGValidConnectionChecker PS:validConnectionCheckerClassName配置非常重要,连接存活检查是连接池可以保持连接的重要配置。Druid连接池可以自动识别大多数的数据库类型,由于jdbc:kingbase8协议属于非内置识别的类型,因此需要手动配置。 连接url配置 点击查看官方JDBC连接配置说明 url格式 jdbc:kingbase8://${host}:${port}/${database}?currentSchema=${schema}&autosave=always&cleanupSavepoints=true 在jdbc连接配置时,${database}和${schema}必须配置,不可缺省。autosave=always、cleanupSavepoints=true属于必须配置的事务参数,否则事务回滚行为与其他数据库不一致,会导致部分操作失败。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: KDB version: 9 major-version: V009R001C001B0030 pamirs: type: KDB version: 9 major-version: V009R001C001B0030 数据库版本 type version majorVersion V009R001C001B0030 KDB 9 V009R001C001B0030 V008R006C008B0020 KDB 9 V009R001C001B0030 PS:由于方言开发环境为V009R001C001B0030版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言与PostgreSQL数据库并无明显差异,Kingbase数据库可以直接使用PostgreSQL数据库方言。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint KDB数据库关键参数检查 PS:以下参数为Oinone平台接入KDB时使用的数据库参数,参数不一致时可尝试启动。 数据库模式 推荐配置:DB_MODE=oracle 数据库安装/初始化时配置 是否大小写敏感 推荐配置:enable_ci=off 是否启用语句级回滚 推荐配置:ora_statement_level_rollback = off show ora_statement_level_rollback; set ora_statement_level_rollback=off; 此参数在Oinone平台接入时使用的版本中未体现出应有的效果。从官方提供的文档来看,此参数与数据库连接串上的autosave=always&cleanupSavepoints=true配置结果应该是一致的,由于此参数配置无效,因此在数据库连接串上必须指定这两个参数。 Oinone平台在最初开发时使用的是基于mysql数据库的事务特性,即不支持语句级回滚的事务行为。因此,为了保证Oinone平台功能正常,需要使得事务行为保持一致。 如不一致,则可能出现某些功能无法正常使用的情况。如:流程设计器首次发布定时触发的工作流时会出现报错;导入/导出任务出现异常无法正常更新任务状态等。 是否将空字符串视为NULL 推荐配置:ora_input_emptystr_isnull = off show ora_input_emptystr_isnull; set ora_input_emptystr_isnull=off; KDB数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is…

    2024年10月29日
    1.3K00

Leave a Reply

登录后才能评论