模型字段之序列化方式

本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。

字段序列化方式说明

序列化方式 说明 备注
JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项
DOT 点拼接集合元素
COMMA 逗号拼接集合元素
BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断

字段序列化方式举例

1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。
2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。

@Model.model(PetItem.MODEL_MODEL)
@Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"})
public class PetItem  extends AbstractDemoCodeModel{

    public static final String MODEL_MODEL="demo.PetItem";

    @Field(displayName = "品种")
    @Field.many2one
    @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"})
    private PetType type;

    @Field(displayName = "品种类型",invisible = true)
    private Long typeId;

    @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<PetItemDetail> petItemDetails;

    @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true)
    @Field.Advanced(columnDefinition = "varchar(1024)")
    private List<String> tags;
}

字段序列化注意点

  1. 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。
  2. 使用Field#serialize属性指定序列化方式,默认为JSON。
  3. 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录

注册自己的序列化器

注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。

package pro.shushi.pamirs.framework.compute.serialize;

import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j;
import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer;
import pro.shushi.pamirs.meta.common.constants.CharacterConstants;
import pro.shushi.pamirs.meta.enmu.SerializeEnum;
import pro.shushi.pamirs.meta.util.TypeUtils;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * 点表达式序列生成处理器实现
 * @author shushi@shushi.pro
 * @version 1.0.0
 */
@SuppressWarnings("rawtypes")
@Slf4j
@Component
public class DotSerializeProcessor implements Serializer<Object, String> {

    @Override
    public String serialize(String ltype, Object value) {
        if (null == value) {
            return null;
        }
        if (List.class.isAssignableFrom(value.getClass())) {
            return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT);
        } else {
            return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT);
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public Object deserialize(String ltype, String ltypeT, String value, String format) {
        if (null == value) {
            return null;
        }
        String[] dots = value.split(CharacterConstants.SEPARATOR_ESCAPE_DOT);
        List list = new ArrayList();
        for (String dot : dots) {
            Object object = TypeUtils.valueOfPrimary(ltypeT, dot, null);
            list.add(object);
        }
        return list;
    }

    @Override
    public String type() {
        return SerializeEnum.DOT.value();
    }
}

字段默认值的反序列化

用@Field.defaultValue注解在字段上配置defaultValue属性时,将根据字段的Ttype类型及字段的Ltype等类型属性,自动进行反序列化。包括但不限于以下几种情况:

  • OBJ、STRING、TEXT、HTML——保持不变
  • BINARY、INTEGER——转换为整数
  • FLOAT、MONEY——转换为浮点数
  • DATETIME、DATE、TIME、YEAR——根据Field.Date#format属性决定反序列化日期格式
  • BOOLEAN——仅允许null、true、false
  • ENUM——使用value进行匹配

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11389.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月24日 pm2:53
下一篇 2024年5月25日 pm3:40

相关推荐

  • 问题排查调试工具使用手册

    当前端发起对应用的访问时,如果出现错误,那么我们可以通过以下方式进行简易排查,如果排查不出来,则也可以把排查工具给出的信息发送给Oinone官方售后进行进一步分析。本文将通过模拟异常信息,来介绍排查工具,提供了哪些辅助信息帮我们来快速定位问题。 排查工具基础介绍 通过前端页面的 /debug 路由路径访问调试工具的页面,假设我们的前端页面访问地址为http://localhost:6800,那么我们的排查工具请求路径就是 http://localhost:6800/debug排查工具可以帮我们排查前端页面元数据异常和后端接口的异常 排查前端页面元数据 将问题页面浏览器地址栏内 page 后的部分复制到调试工具的 debug 路由后重新发起请求,如图可以看到调试工具展示的信息,可以根据这些信息排查问题。 排查后端接口 后端接口出现问题后,打开(在原页面)浏览器的调试工具,切换到“网络”的标签页,在左侧的历史请求列表中找到需要调试的请求,右键会弹出菜单,点击菜单中的 “复制”,再次展开该菜单,点击二级菜单中的“以 fetch 格式复制”,这样可以复制到调试所需要的信息 2.复制调试信息到“接口调试”标签页内的文本框内,点击“发起请求”按钮获取调试结果 我们可以看到页面展示了该接口的各种调试信息,我们可以据此排查问题。 场景化的排查思路 业务代码中存在代码bug 报错后发起调试请求,我们可以看到,调试工具直接给出了异常抛出的具体代码所在位置,此时再切换到“全部堆栈”下,可以看到是业务类的233行导致的空指针异常,查看代码后分析可得是data.getName().eqauls方法在调用前未做条件判断补全该判断后代码可以正常执行 业务代码中没有直接的错误,异常在平台代码中抛出 报错后发起调试请求可以看到异常不在业务代码内再切换到“全部堆栈”,可以看到具体异常信息,提示core_demo_item表出现了重复的主键,该表是DemoItem模型的我们还可以切换到“sql调试”的标签页,可以看到出错的具体sql语句经过分析可以得知是240行的data.create()�重复创建数据导致的。 三、排查工具无法定位怎么办 当我们通过排查工具还是没有定位到问题的时候,可以通过调试页面的“下载全部调试数据”和“下载调试数据”按钮将调试信息的数据发送给官方售后人员帮助我们定位排查问题。 点击页面最顶部的“下载全部调试数据”按钮,可以下载页面调试数据和接口调试数据点击“调试接口”标签页内的“下载调试数据”按钮,可以下载接口调试数据 四、排查工具细节

    2024年5月21日
    1.3K00
  • Excel导入导出模板翻译

    导出翻译项 与翻译的导出全部翻译项类似,只是该操作目前没有加入到页面交互中,需要通过工具发起后端服务请求,拿到导入导出翻译Excel模版,添加模版翻译项。(查看路径:文件–导出任务) mutation { excelExportTaskMutation { createExportTask( data: { workbookDefinition: { model: "file.ExcelWorkbookDefinition" name: "excelLocationTemplate" } } ) { name } } } variables: { "path": "/file", "lang": "en-US" } 参数说明:(不在以下说明范围内的参数无需修改) variables.lang参数:用于指定翻译项的目标语言编码,与【资源】-【语言】中的编码一致。 导入翻译项 mutation { excelImportTaskMutation { createImportTask( data: { workbookDefinition: { model: "file.ExcelWorkbookDefinition" name: "excelLocationTemplate" } file: { url: "翻译项URL链接" } } ) { name } } } variables: { "path": "/file" } 参数说明: 将翻译项URL链接改为实际可访问的文件链接即可,可通过页面中任意文件上传的组件获取。

    2024年12月5日
    38400
  • Oinone引入搜索引擎(增强模型)

    场景描述 在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch; 使用前你应该 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/ 有一个可用的ElasticSearch环境(本地项目能引用到) 前置约束 增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。 项目引入搜索步骤 1、boot工程加入相关依赖包 boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本 boot工程加入pamris-channel的工程依赖 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-core</artifactId> </dependency> 2、api工程加入相关依赖包 在XXX-api中增加入pamirs-channel-api的依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-api</artifactId> </dependency> 3、yml文件配置 在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致 pamirs: record: sql: #改成自己本地路径(或服务器路径) store: /Users/wangxian/record boot: modules: – channel ## 确保也安装了sql_record – sql_record elastic: url: 127.0.0.1:9200 4、项目的模块增加模块依赖 XXXModule增加对ChannelModule的依赖 @Module(dependencies = {ChannelModule.MODULE_MODULE}) 5、增加增强模型(举例) package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; } 6、重启系统看效果 1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据 2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作 个性化dump逻辑 通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。 重写ShardingModelEnhance模型的synchronize方法 重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】 package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.List; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; @Field(displayName = "nick") private String nick; @Function.Advanced(displayName = "同步数据", type = FunctionTypeEnum.UPDATE)…

    2024年5月14日
    1.3K00
  • DsHint(指定数据源)和BatchSizeHint(指定批次数量)

    概述和使用场景 DsHintApi ,强制指定数据源, BatchSizeHintApi ,强制指定查询批量数量 API定义 DsHintApi public static DsHintApi model(String model/**模型编码*/) { // 具体实现 } public DsHintApi(Object dsKey/***数据源名称*/) { // 具体实现 } BatchSizeHintApi public static BatchSizeHintApi use(Integer batchSize) { // 具体实现 } 使用示例 1、【注意】代码中使用 try-with-resources语法; 否则可能会出现数据源错乱 2、DsHintApi使用示例包裹在try里面的所有查询都会强制使用指定的数据源 // 使用方式1: try (DsHintApi dsHintApi = DsHintApi.model(PetItem.MODEL_MODEL)) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 使用方式2: try (DsHintApi dsHintApi = DsHintApi.use("数据源名称")) { List<PetItem> items = demoItemDAO.customSqlDemoItem(); PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } 3、BatchSizeHintApi使用示例包裹在try里面的所有查询都会按照指定的batchSize进行查询 // 查询指定每次查询500跳 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(500)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); } // 查询指定不分页(batchSize=-1)查询。 请注意,你必须在明确不需要分页查询的情况下使用;如果数据量超大不分页可能会卡死。默认不指定分页数的情况下下平台会进行分页查询 try (BatchSizeHintApi batchSizeHintApi = BatchSizeHintApi.use(-1)) { PetShopProxy data2 = data.queryById(); data2.fieldQuery(PetShopProxy::getPetTalents); }

    2024年5月18日
    85000
  • 如何自定义Excel导出功能

    介绍 在平台提供的默认导出功能无法满足业务需求的时候,我们可以自定义导出功能,以满足业务中个性化的需求。 功能示例 继承平台的导出任务模型,加上需要在导出的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导出任务") public class DemoItemExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemExportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导出弹窗视图的数据初始化方法和导出提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.file.api.action.ExcelExportTaskAction; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemExportTask.MODEL_MODEL) public class DemoItemExcelExportTaskAction extends ExcelExportTaskAction { public DemoItemExcelExportTaskAction(ExcelFileService excelFileService) { super(excelFileService); } @Action(displayName = "导出", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemExportTask createExportTask(DemoItemExportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } super.createExportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemExportTask construct(DemoItemExportTask data) { data.construct(); return data; } } 编写导出的数据处理逻辑,此处可以拿到导出弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.extpoint.ExcelExportFetchDataExtPoint; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.meta.annotation.ExtPoint; import java.util.Collections; import java.util.List; @Component public class DemoItemExportExtPoint extends ExcelExportSameQueryPageTemplate implements ExcelTemplateInit , ExcelExportFetchDataExtPoint…

    2024年1月3日
    73200

Leave a Reply

登录后才能评论