Oinone协同开发使用手册

概述

Oinone平台为开发人员提供了本地环境 - 测试环境之间的协同开发模式,可以使得开发人员在本地环境中设计的模型、函数等元数据实时被测试环境使用并设计。开发人员开发完成对应页面和功能后,可以部署至测试环境直接进行测试。

本篇文章将详细介绍协同开发模式在实际开发中的应用及相关内容。

名词解释

  • 本地环境: 开发人员的本地启动环境
  • 测试环境: 在测试服务器上部署的业务测试环境,业务工程服务设计器服务共用中间件
  • 业务工程服务:在测试服务器上部署的业务工程
  • 设计器服务: 在测试服务器上部署的设计器镜像
  • 一套环境:以测试环境为例,业务工程服务设计器服务共同组成一套环境
  • 生产环境: 在生产服务器上部署的业务生产环境

环境准备

  1. 部署了一个可用的设计器服务,并能正常访问。(需参照下文启动设计器环境内容进行相应修改)
  2. 准备一个用于开发的java工程。
  3. 准备一个用于部署测试环境的服务器。

协同参数介绍

用于测试环境的参数

-PmetaProtected=${value}

启用元数据保护,只有配置相同启动参数的服务才允许对元数据进行更新。通常该命令用于设计器服务业务工程服务,并且两个环境需使用相同的元数据保护标记(value)进行启动。本地环境不使用该命令,以防止本地环境在协同开发时意外修改测试环境元数据,导致元数据混乱。

用法

java -jar boot.jar -PmetaProtected=pamirs

用于本地环境的配置

  • 使用命令配置ownSign(推荐)
java -jar boot.jar --pamirs.distribution.session.ownSign=demo
  • 使用yaml配置ownSign
pamirs:
  distribution:
    session:
      allMetaRefresh: false # 启用元数据全量刷新(备用配置,如遇元数据错误或混乱,启用该配置可进行恢复,使用一次后关闭即可)
      ownSign: demo # 协同开发元数据隔离标记,用于区分不同开发人员的本地环境,其他环境不允许使用

启动设计器环境

docker-run启动

-e PROGRAM_ARGS=-PmetaProtected=pamirs

docker-compose启动

services:
  backend:
    container_name: designer-backend
    image: harbor.oinone.top/oinone/designer-backend-v5.0
    restart: always
    environment:
      # 指定spring.profiles.active
      ARG_ENV: dev
      # 指定-Plifecycle
      ARG_LIFECYCLE: INSTALL
      # jvm参数
      JVM_OPTIONS: ""
      # 程序参数
      PROGRAM_ARGS: "-PmetaProtected=pamirs"

PS: java [JVM_OPTIONS?] -jar boot.jar [PROGRAM_ARGS?]

开发流程示例图

Oinone协同开发使用手册

具体使用步骤详见协同开发支持

Oinone社区 作者:张博昊原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/14878.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
张博昊的头像张博昊数式管理员
上一篇 2024年7月23日 pm5:41
下一篇 2024年7月24日 pm1:49

相关推荐

  • 如何加密gql请求内容

    介绍 在一些对安全等级要求比较高的场景,oinone提供了扩展前端加密请求内容,后端解密请求内容的能力,该方案要求前后端的加解密方案统一。 后端 1. 继承平台的RequestController新增一个请求类,在里面处理加密逻辑 package pro.shushi.pamirs.demo.core.controller; import org.apache.commons.lang3.StringUtils; import org.springframework.web.bind.annotation.*; import pro.shushi.pamirs.framework.gateways.graph.java.RequestController; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.protocol.PamirsClientRequestParam; import pro.shushi.pamirs.user.api.utils.AES256Utils; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.util.HashMap; import java.util.List; import java.util.Map; @RestController @Slf4j public class DemoRequestController extends RequestController { @SuppressWarnings("unused") @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { decrypt(gql); return super.pamirsPost(moduleName, gql, request, response); } @SuppressWarnings("unused") @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}/batch", method = RequestMethod.POST ) public String pamirsBatch(@PathVariable("moduleName") String moduleName, @RequestBody List<PamirsClientRequestParam> gqls, HttpServletRequest request, HttpServletResponse response) { for (PamirsClientRequestParam gql : gqls) { decrypt(gql); } return super.pamirsBatch(moduleName, gqls, request, response); } private static final String GQL_VAR = "gql"; private void decrypt(PamirsClientRequestParam gql) { Map<String, Object> variables = null != gql.getVariables() ? gql.getVariables() : new HashMap<>(); String encodeStr = (String) variables.get(GQL_VAR); if (StringUtils.isNotBlank(encodeStr)) { variables.put(GQL_VAR, null); // TODO 此处的加密方法可以换为其他算法 String gqlQuery = AES256Utils.decrypt(encodeStr); gql.setQuery(gqlQuery); } } } 2.boot工程的启动类排除掉平台默认的RequestController类 @ComponentScan( excludeFilters = { // 该注解排除平台的RequestController类 @ComponentScan.Filter( type = FilterType.REGEX, pattern = "pro.shushi.pamirs.framework.gateways.graph.java.RequestController" ) }) public class DemoApplication { } 以下为实际项目中的启动类示例 package pro.shushi.pamirs.demo.boot; import org.apache.ibatis.annotations.Mapper; import org.mybatis.spring.annotation.MapperScan; import org.springframework.boot.WebApplicationType; import org.springframework.boot.autoconfigure.SpringBootApplication; import…

    2024年6月20日
    1.1K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.1K00
  • 后端:如何自定义表达式实现特殊需求?扩展内置函数表达式

    平台提供了很多的表达式,如果这些表达式不满足场景?那我们应该如何新增表达式去满足项目的需求?目前平台支持的表达式内置函数,参考 1. 扩展表达式的场景 注解@Validation的rule字段支持配置表达式校验如果需要判断入参List类型字段中的某一个参数进行NULL校验,发现平台的内置函数不支持该场景的配置,这里就可以通过平台的机制,对内置函数进行扩展。 常见的一些代码场景,如下: package pro.shushi.pamirs.demo.core.action; ……引用类 @Model.model(PetShopProxy.MODEL_MODEL) @Component public class PetShopProxyAction extends DataStatusBehavior<PetShopProxy> { @Override protected PetShopProxy fetchData(PetShopProxy data) { return data.queryById(); } @Validation(ruleWithTips = { @Validation.Rule(value = "!IS_BLANK(data.code)", error = "编码为必填项"), @Validation.Rule(value = "LEN(data.name) < 128", error = "名称过长,不能超过128位"), }) @Action(displayName = "启用") @Action.Advanced(invisible="!(activeRecord.code !== undefined && !IS_BLANK(activeRecord.code))") public PetShopProxy dataStatusEnable(PetShopProxy data){ data = super.dataStatusEnable(data); data.updateById(); return data; } ……其他代码 } 2. 新建一个自定义表达式的函数 校验入参如果是个集合对象的情况下,单个对象的某个字段如果为空,返回false的函数。 例子:新建一个CustomCollectionFunctions类 package xxx.xxx.xxx; import org.apache.commons.collections4.CollectionUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.common.constants.NamespaceConstants; import pro.shushi.pamirs.meta.util.FieldUtils; import java.util.List; import static pro.shushi.pamirs.meta.enmu.FunctionCategoryEnum.COLLECTION; import static pro.shushi.pamirs.meta.enmu.FunctionLanguageEnum.JAVA; import static pro.shushi.pamirs.meta.enmu.FunctionOpenEnum.LOCAL; import static pro.shushi.pamirs.meta.enmu.FunctionSceneEnum.EXPRESSION; /** * 自定义内置函数 */ @Fun(NamespaceConstants.expression) @Component public class CustomCollectionFunctions { /** * LIST_FIELD_NULL 就是我们自定义的表达式,不能与已经存在的表达式重复!!! * * @param list * @param field * @return */ @Function.Advanced( displayName = "校验集成的参数是否为null", language = JAVA, builtin = true, category = COLLECTION ) @Function.fun("LIST_FIELD_NULL") @Function(name = "LIST_FIELD_NULL", scene = {EXPRESSION}, openLevel = LOCAL, summary = "函数示例: LIST_FIELD_NULL(list,field),函数说明: 传入一个对象集合,校验集合的字段是否为空" ) public Boolean listFieldNull(List list, String field) { if (null == list) { return false; } if (CollectionUtils.isEmpty(list)) { return false; } for (Object data : list) { Object value =…

    2024年5月30日
    1.9K00
  • 项目中工作流引入和流程触发

    目录 1. 使用工作流需要依赖的包和设置2. 触发方式2.1 自动触发方式2.2 触发方式 1.使用工作流需要依赖的包和设置 1.1 工作流需要依赖的模块 需在pom.xml中增加workflow、sql-record和trigger相关模块的依赖 workflow:工作流运行核心模块 sql-record:监听流程发布以后对应模型的增删改监听 trigger:异步任务调度模块 <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-api</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> 在application.yml中增加对应模块的依赖以及sql-record路径以及其他相关设置 pamirs: … record: sql: #改成自己路径 store: /opt/pamirs/logs … boot: init: true sync: true modules: … – sql_record – trigger – workflow … sharding: define: data-sources: ds: pamirs models: "[trigger.PamirsSchedule]": tables: 0..13 event: enabled: true schedule: enabled: true # ownSign区分不同应用 ownSign: demo rocket-mq: # enabled 为 false情况不用配置 namesrv-addr: 192.168.6.2:19876 trigger: auto-trigger: true 2.触发方式 2.1自动触发方式 在流程设计器中设置触发方式,如果设置了代码触发方式则不会自动触发 2.2代码调用方式触发 2.2.1.再流程设计器中触发设置中,设置为是否人工触发设置为是 2.2.2.查询数据库获取该流程的编码 2.2.3.在代码中调用 /** * 触发⼯作流实例 */ private Boolean startWorkflow(WorkflowD workflowD, IdModel modelData) { WorkflowDefinition workflowDefinition = new WorkflowDefinition().queryOneByWrapper( Pops.<WorkflowDefinition>lambdaQuery() .from(WorkflowDefinition.MODEL_MODEL) .eq(WorkflowDefinition::getWorkflowCode, workflowD.getCode()) .eq(WorkflowDefinition::getActive, 1) ); if (null == workflowDefinition) { // 流程没有运⾏实例 return Boolean.FALSE; } String model = Models.api().getModel(modelData); //⼯作流上下⽂ WorkflowDataContext wdc = new WorkflowDataContext(); wdc.setDataType(WorkflowVariationTypeEnum.ADD); wdc.setModel(model); wdc.setWorkflowDefinitionDefinition(workflowDefinition.parseContent()); wdc.setWorkflowDefinition(workflowDefinition); wdc.setWorkflowDefinitionId(workflowDefinition.getId()); IdModel copyData = KryoUtils.get().copy(modelData); // ⼿动触发创建的动作流,将操作⼈设置为当前⽤户,作为流程的发起⼈ copyData.setCreateUid(PamirsSession.getUserId()); copyData.setWriteUid(PamirsSession.getUserId()); String jsonData = JsonUtils.toJSONString(copyData.get_d()); //触发⼯作流 新增时触发-onCreateManual 更新时触发-onUpdateManual Fun.run(WorkflowModelTriggerFunction.FUN_NAMESPACE, "onCreateManual", wdc, msgId, jsonData); return Boolean.TRUE; }

    2023年11月7日
    1.1K00
  • 工作流用户待办过滤站内信

    工作流用户待办过滤站内信 全局过滤 启动工程application.yml中配置: pamirs: workflow: notify: false 个性化过滤 实现pro.shushi.pamirs.workflow.app.api.service.WorkflowMailFilterApi接口 返回true表示需要发送站内信 返回false表示不需要发送站内信 示例: import org.apache.commons.lang3.StringUtils; import pro.shushi.pamirs.message.model.PamirsMessage; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.user.api.model.PamirsUser; import pro.shushi.pamirs.workflow.app.api.model.WorkflowUserTask; import pro.shushi.pamirs.workflow.app.api.service.WorkflowMailFilterApi; /** * MyWorkflowMailFilterImpl * * @author yakir on 2025/02/24 16:28. */ @Fun(WorkflowMailFilterApi.FUN_NAMESPACE) public class MyWorkflowMailFilterImpl implements WorkflowMailFilterApi { @Override @Function public Boolean filter(WorkflowUserTask workflowUserTask, PamirsUser user, PamirsMessage message) { // 按用户待办过滤 workflowUserTask if (10000L == workflowUserTask.getInitiatorUid()){ return true; } // 按用户过滤 user if (1000L == user.getId()){ return true; } // 按站内信消息过滤 message if (StringUtils.contains(message.getBody(), "你好")) { return true; } return false; } }

    2025年2月24日
    88100

Leave a Reply

登录后才能评论