【后端】项目开发后端知识要点地图

目录

工程结构篇

协议篇

基本功能及配置篇

Dubbo

Nacos

OSS

Trigger/Async/Schedule

Excel导入/导出(file)

Expression(表达式)

ShardingJDBC(分库分表)

Elasticsearch(ES)

数据库方言配置(Dialect)

其他功能使用文档

特定场景解决方案

工程部署

后端部署

设计器部署

其他环境部署

可视化调试工具

协同开发

工作流

数据可视化运行时

界面设计器

流程设计器

数据可视化

其他

QA

Oinone社区 作者:张博昊原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/18493.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
张博昊的头像张博昊数式管理员
上一篇 2024年10月23日 am10:07
下一篇 2024年10月23日 pm2:37

相关推荐

  • Oinone环境保护(v5.2.3以上)

    概述 Oinone平台为合作伙伴提供了环境保护功能,以确保在一套环境可以在较为安全前提下修改配置文件,启动多个JVM等部署操作。 本章内容主要介绍与环境保护功能相关的启动参数。 名词解释 本地开发环境:开发人员在本地启动业务工程的环境 公共环境:包含设计器镜像和业务工程的环境 环境保护参数介绍 【注意】参数是加在程序实参 (Program arguments)上,通常可能错误的加在Active Profiles上了 -PenvProtected=${value} 是否启用环境保护,默认为true。 环境保护是通过与最近一次保存在数据库的base_platform_environment表中数据进行比对,并根据每个参数的配置特性进行判断,在启动时将有错误的内容打印在启动日志中,以便于开发者进行问题排查。 除此之外,环境保护功能还提供了一些生产配置的优化建议,开发者可以在启动时关注这些日志,从而对生产环境的配置进行调优。 -PsaveEnvironments=${value} 是否将此次启动的环境参数保存到数据库,默认为true。 在某些特殊情况下,为了避免公共环境中的保护参数发生不必要的变化,我们可以选择不保存此次启动时的配置参数到数据库中,这样就不会影响其他JVM启动时发生校验失败而无法启动的问题。 -PstrictProtected=${value} 是否使用严格校验模式,默认为false 通常我们建议在公共环境启用严格校验模式,这样可以最大程度的保护公共环境的元数据不受其他环境干扰。 PS:在启用严格校验模式时,需避免内外网使用不同连接地址的场景。如无法避免,则无法启用严格校验模式。 常见问题 需要迁移数据库,并更换了数据库连接地址该如何操作? 将原有数据库迁移到新数据库。 修改配置文件中数据库的连接地址。 在启动脚本中增加-PenvProtected=false关闭环境保护。 启动JVM服务可以看到有错误的日志提示,但不会中断本次启动。 移除启动脚本中的-PenvProtected=false或将值改为true,下次启动时将继续进行环境保护检查。 可查看数据库中base_platform_environment表中对应数据库连接配置已发生修改,此时若其他JVM在启动前未正确修改,则无法启动。 本地开发时需要修改Redis连接地址到本地,但希望不影响公共环境的使用该如何操作? PS:由于Redis中的元数据缓存是根据数据库差量进行同步的,此操作会导致公共环境在启动时无法正确刷新Redis中的元数据缓存,需要配合pamirs.distribution.session.allMetaRefresh参数进行操作。如无特殊必要,我们不建议使用该形式进行协同开发,多次修改配置会导致出错的概率增加。 本地环境首次启动时,除了修改Redis相关配置外,还需要配置pamirs.distribution.session.allMetaRefresh=true,将本地新连接的Redis进行初始化。 在本地启动时,增加-PenvProtected=false -PsaveEnvironments=false启动参数,以确保本地启动不会修改公共环境的配置,并且可以正常通过环境保护检测。 本地环境成功启动并正常开发功能后,需要发布到公共环境进行测试时,需要先修改公共环境中业务工程配置pamirs.distribution.session.allMetaRefresh=true后,再启动业务工程。 启动一次业务工程后,将配置还原为pamirs.distribution.session.allMetaRefresh=false。

    2024年10月21日
    1.2K00
  • 多模型联表查询

    多模型联表查询 多对一或者一对一关联关系,通过关联模型的字段查询数据 模型结构定义 模型A @Model(displayName = "A") @Model.model(A.MODEL_MODEL) public class A extends IdModel { public final static String MODEL_MODEL = "test.A"; @Field(displayName = "b") @Field.many2one @Field.Relation(relationFields = {"bId"}, referenceFields = {"id"}) private B b; @Field(displayName = "bId") @Field.Integer private Long bId; @Field(displayName = "B审批状态") @Field.Enum @Field.Related(related = {"b", "approvalEnum"}) private ApprovalEnum approvalEnum; } 模型B @Model(displayName = "B") @Model.model(B.MODEL_MODEL) public class B extends IdModel { public final static String MODEL_MODEL = "test.B"; @Field(displayName = "审批状态") @Field.Enum private ApprovalEnum approvalEnum; } 页面设计 在界面设计器中, 设计相对应的表格页面。 A模型related字段拖到搜索栏中。 发布页面 自定义Hook import cz.jirutka.rsql.parser.ast.RSQLOperators; import org.apache.commons.lang3.ArrayUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.framework.connectors.data.sql.AbstractWrapper; import pro.shushi.pamirs.framework.connectors.data.sql.query.QueryWrapper; import pro.shushi.pamirs.meta.annotation.Hook; import pro.shushi.pamirs.meta.api.Models; import pro.shushi.pamirs.meta.api.core.faas.HookBefore; import pro.shushi.pamirs.meta.api.core.orm.convert.ClientDataConverter; import pro.shushi.pamirs.meta.api.core.orm.template.context.ModelComputeContext; import pro.shushi.pamirs.meta.api.dto.config.ModelConfig; import pro.shushi.pamirs.meta.api.dto.config.ModelFieldConfig; import pro.shushi.pamirs.meta.api.dto.fun.Function; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.base.D; import pro.shushi.pamirs.meta.common.spi.Spider; import pro.shushi.pamirs.meta.domain.model.ModelField; import pro.shushi.pamirs.meta.enmu.TtypeEnum; import pro.shushi.pamirs.resource.api.constants.FieldConstants; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.stream.Collectors; /** * 通用 queryData处理。 */ @Slf4j @Component public class QueryDataHook implements HookBefore { @Override @Hook(priority = 30) public Object run(Function function, Object… args) { getValueByType(args); return function; } private void getValueByType(Object… args) { if (ArrayUtils.isEmpty(args)) { return; } for (int index = 0; index < args.length &&…

    2025年1月9日
    1.4K00
  • Oinone平台可视化调试工具

    为方便开发者定位问题,我们提供了可视化的调试工具。
    该文档将介绍可视化调试工具的基本使用方法。

    2024年4月13日
    1.2K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.2K00
  • Oinone连接外部数据源方案

    场景描述 在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据; 本篇文章只介绍通过程序代码操作外部数据源的方式. 整体方案 Oinone管理外部数据源,即yml中配置外部数据源; 后端通过Mapper的方式进行数据操作(增/删/查/改); 调用Mapper接口的时候,指定到外部数据源; 详细步骤 1、数据源配置(application.yml), 与正常的数据源配置一样 out_ds_name(外部数据源别名): driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource # local环境配置调整 url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: 用户名 password: 命名 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 2、外部数据源其他配置外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】 persistence: global: auto-create-database: true auto-create-table: true ds: out_ds_name(外部数据源别名): # 不创建DB auto-create-database: false # 不创建数据表 auto-create-table: false 3、后端写Mapper SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制; Mapper和SQL写到一起,或者分开两个文件都可以 4、Mapper被Service或者Action调用1)启动的Application中@MapperScan需要扫描到对应的包。2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。 @Autowired private ScheduleItemMapper scheduleItemMapper; public saveData(Object data) { ScheduleQuery scheduleQuery = new ScheduleQuery(); //scheduleQuery.setActionName(); try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) { List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery); // 具体业务逻辑 } } 其他参考:如何自定义sql语句:https://doc.oinone.top/backend/4759.html

    2024年5月17日
    1.5K00

Leave a Reply

登录后才能评论