JSON转换工具类
- JSON转对象
pro.shushi.pamirs.meta.util.JsonUtils
- JSON转模型
pro.shushi.pamirs.framework.orm.json.PamirsDataUtils
Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/17.html
访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验
pro.shushi.pamirs.meta.util.JsonUtils
pro.shushi.pamirs.framework.orm.json.PamirsDataUtils
Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/17.html
访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验
总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…
概述 Oinone平台为合作伙伴提供了多种部署方式,这篇文章将介绍如何在私有云环境部署Oinone平台JAR包。 本文以5.2.6版本为例进行介绍。 部署环境要求 包含全部中间件及设计器服务的环境要求 CPU:8 vCPU 内存(RAM):16G以上 硬盘(HDD/SSD):60G以上 仅设计器服务的环境要求 CPU:8 vCPU 内存(RAM):8G以上 硬盘(HDD/SSD):40G以上 部署准备 在部署环境创建部署目录 mkdir -p /home/admin/oinone-designer PS:为方便管理,所有Oinone部署所需文件都应该在该目录下存放。 服务器需要安装的中间件 JDK:jdk_1.8_221版本以上 下载地址 MySQL:8.0.26版本以上 下载地址 Redis:5.0.2版本以上 下载地址 安装教程 Zookeeper:3.5.8版本以上 下载地址 安装教程 Nginx:任意版本(推荐使用源码编译安装方式,并开启rewrite、https等功能模块) Linux安装教程 下载地址 使用Docker启动所有中间件 点击下载一键部署所有中间件套件包 middleware-kits.zip 部署清单 下面列举了文章中在本地环境操作结束后的全部文件: 设计器JAR包:pamirs-designer-boot-v5.2-5.2.6.jar 离线部署结构包:oinone-designer-jar-offline.zip 第三方数据库驱动包(非MySQL数据库必须) PS:如需一次性拷贝所有部署文件到部署环境,可以将文档步骤在本地环境执行后,一次性将所有文件进行传输。 在本地环境准备部署文件 下载离线部署结构包 oinone-designer-jar-offline.zip 下载部署JAR包 5.2.6版本发布日志 查看更多版本 找到独立部署所有设计器JAR标题,下面有对应的JAR包提供下载。 例如:https://oinone-jar.oss-cn-zhangjiakou.aliyuncs.com/install/oinone-designer/pamirs-designer-boot-v5.2-5.2.6.jar 后端服务部署 将部署JAR包移动到backend目录下,并重命名为oinone-designer.jar mv pamirs-designer-boot-v5.2-5.2.6.jar backend/oinone-designer.jar PS:该名称为startup.sh脚本的默认值,可根据实际情况自行修改 将Pamirs许可证移动到backend/config目录下,并重命名为license.lic mv oinone-demo_1730163770607.lic backend/config/license.lic 加载非MySQL数据库驱动(按需) 将驱动jar文件移动到backend/lib目录下即可。 以KDB8数据库驱动kingbase8-8.6.0.jar为例 mv kingbase8-8.6.0.jar backend/lib/ PS:backend/lib目录为非设计器内置包的外部加载目录(外部库),可以添加任何jar包集成到设计器中。 修改backend/startup.sh脚本 IP:修改为可被外部访问的IP地址 DB_BASE_:base库相关数据库连接配置 DB_PAMIRS_:pamirs库相关数据库连接配置 REDIS_:Redis相关配置 MQ_NAME_SERVER:RocketMQ的name-server连接地址 ZOOKEEPER_:Zookeeper相关配置 PS:若需要配置方言或其他参数,可直接修改backend/config/application.yml配置文件,变量仅用于简单配置场景 执行startup.sh脚本启动 sh startup.sh 执行完成后会打印三个路径 后端路径:backend root path: /path/to/backend 前端路径:frontend root path: /path/to/frontend Nginx配置路径:nginx services path: /path/to/nginx Nginx配置 在本地nginx服务中找到nginx.conf,并添加Nginx配置路径为加载目录 http { … include /path/to/nginx/*.conf; } 修改结构包中的default.conf第7行root配置为前端路径到dist目录下 server { … root /path/to/frontend/dist; } 修改结构包中的oss.conf第30行alias配置为前端路径到static目录下 server { … location /static { … alias /path/to/frontend/static; } } 访问服务 使用http://127.0.0.1:9090访问服务
概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…
概述 Oinone平台为开发人员提供了本地环境 – 测试环境之间的协同开发模式,可以使得开发人员在本地环境中设计的模型、函数等元数据实时被测试环境使用并设计。开发人员开发完成对应页面和功能后,可以部署至测试环境直接进行测试。 本篇文章将详细介绍协同开发模式在实际开发中的应用及相关内容。 名词解释 本地环境: 开发人员的本地启动环境 测试环境: 在测试服务器上部署的业务测试环境,业务工程服务和设计器服务共用中间件 业务工程服务:在测试服务器上部署的业务工程 设计器服务: 在测试服务器上部署的设计器镜像 一套环境:以测试环境为例,业务工程服务和设计器服务共同组成一套环境 生产环境: 在生产服务器上部署的业务生产环境 环境准备 部署了一个可用的设计器服务,并能正常访问。(需参照下文启动设计器环境内容进行相应修改) 准备一个用于开发的java工程。 准备一个用于部署测试环境的服务器。 协同参数介绍 用于测试环境的参数 -PmetaProtected=${value} 启用元数据保护,只有配置相同启动参数的服务才允许对元数据进行更新。通常该命令用于设计器服务和业务工程服务,并且两个环境需使用相同的元数据保护标记(value)进行启动。本地环境不使用该命令,以防止本地环境在协同开发时意外修改测试环境元数据,导致元数据混乱。 用法 java -jar boot.jar -PmetaProtected=pamirs 用于本地环境的配置 使用命令配置ownSign(推荐) java -jar boot.jar –pamirs.distribution.session.ownSign=demo 使用yaml配置ownSign pamirs: distribution: session: allMetaRefresh: false # 启用元数据全量刷新(备用配置,如遇元数据错误或混乱,启用该配置可进行恢复,使用一次后关闭即可) ownSign: demo # 协同开发元数据隔离标记,用于区分不同开发人员的本地环境,其他环境不允许使用 启动设计器环境 docker-run启动 -e PROGRAM_ARGS=-PmetaProtected=pamirs docker-compose启动 services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: # 指定spring.profiles.active ARG_ENV: dev # 指定-Plifecycle ARG_LIFECYCLE: INSTALL # jvm参数 JVM_OPTIONS: "" # 程序参数 PROGRAM_ARGS: "-PmetaProtected=pamirs" PS: java [JVM_OPTIONS?] -jar boot.jar [PROGRAM_ARGS?] 开发流程示例图 具体使用步骤详见协同开发支持
通过源码分析,从页面发起请求,如果通过graphQL传输到具体action的链路,并且在这之间做了哪些隐式处理分析源码版本5.1.x 请求流程大致如下: 拦截所有指定的请求 组装成graphQL请求信息 调用graphQL执行 通过hook拦截先执行 RsqlDecodeHook:rsql解密 UserHook: 获取用户信息, 通过cookies获取用户ID,再查表获取用户信息,放到本地Local线程里 RoleHook: 角色Hook FunctionPermissionHook: 函数权限Hook ,跳过权限拦截的实现放在这一层,对应的配置 pamirs: auth: fun-filter: – namespace: user.PamirsUserTransient fun: login #登录 – namespace: top.PetShop fun: action DataPermissionHook: 数据权限hook PlaceHolderHook:占位符转化替换hook RsqlParseHook: 解释Rsql hook SingletonModelUpdateHookBefore 执行post具体内容 通过hook拦截后执行 QueryPageHook4TreeAfter: 树形Parent查询优化 FieldPermissionHook: 字段权限Hook UserQueryPageHookAfter UserQueryOneHookAfter 封装执行结果信息返回 时序图 核心源码解析 拦截所有指定的请求 /pamirs/模块名RequestController @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { } DefaultRequestExecutor 构建graph请求信息,并调用graph请求 () -> execute(GraphQL::execute, param), param private <T> T execute(BiFunction<GraphQL, ExecutionInput, T> executor, PamirsRequestParam param) { // 获取GraphQL请求信息,包含grapsh schema GraphQL graphQL = buildGraphQL(param); … ExecutionInput executionInput = ExecutionInput.newExecutionInput() .query(param.getQuery()) .variables(param.getVariables().getVariables()) .dataLoaderRegistry(Spider.getDefaultExtension(DataLoaderRegistryApi.class).dataLoader()) .build(); … // 调用 GraphQL的方法execute 执行 T result = executor.apply(graphQL, executionInput); … return result; } QueryAndMutationBinder 绑定graphQL读取写入操作 public static DataFetcher<?> dataFetcher(Function function, ModelConfig modelConfig) { if (isAsync()) { if (FunctionTypeEnum.QUERY.in(function.getType())) { return AsyncDataFetcher.async(dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment), ExecutorServiceApi.getExecutorService()); } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } private static Object dataFetcherAction(Function function, ModelConfig modelConfig, DataFetchingEnvironment environment) { try { SessionExtendUtils.tagMainRequest(); // 使用共享的请求和响应对象 return Spider.getDefaultExtension(ActionBinderApi.class) .action(modelConfig,…