【PostgreSQL】后端部署使用PostgreSQL数据库

PostgreSQL数据库配置

驱动配置

Maven配置(14.3版本可用)
<postgresql.version>42.6.0</postgresql.version>

<dependency>
    <groupId>org.postgresql</groupId>
    <artifactId>postgresql</artifactId>
    <version>${postgresql.version}</version>
</dependency>
离线驱动下载

postgresql-42.2.18.jar
postgresql-42.6.0.jar
postgresql-42.7.3.jar

JDBC连接配置

pamirs:
  datasource:
    base:
      type: com.alibaba.druid.pool.DruidDataSource
      driverClassName: org.postgresql.Driver
      url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=base
      username: xxxxxx
      password: xxxxxx

连接url配置

暂无官方资料

url格式
jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema}

在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。

其他连接参数如需配置,可自行查阅相关资料进行调优。

方言配置

pamirs方言配置
pamirs:
  dialect:
    ds:
      base:
        type: PostgreSQL
        version: 14
        major-version: 14.3
      pamirs:
        type: PostgreSQL
        version: 14
        major-version: 14.3
数据库版本 type version majorVersion
14.x PostgreSQL 14 14.3

PS:由于方言开发环境为14.3版本,其他类似版本(14.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。

schedule方言配置
pamirs:
  event:
    enabled: true
    schedule:
      enabled: true
      dialect:
        type: PostgreSQL
        version: 14
        major-version: 14.3
type version majorVersion
PostgreSQL 14 14.3

PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。

其他配置

逻辑删除的值配置
pamirs:
  mapper:
    global:
      table-info:
        logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint
PostgreSQL数据库用户初始化及授权
-- init root user (user name can be modified by oneself)

CREATE USER root WITH PASSWORD 'password';

-- if using automatic database and schema creation, this is very important.
ALTER USER root CREATEDB;

SELECT * FROM pg_roles;

-- if using postgres database, this authorization is required.
GRANT CREATE ON DATABASE postgres TO root;

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/install/50.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
oinone的头像oinone
上一篇 2023年6月20日 pm4:07
下一篇 2023年11月2日 pm1:58

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • Oinone平台可视化调试工具

    为方便开发者定位问题,我们提供了可视化的调试工具。
    该文档将介绍可视化调试工具的基本使用方法。

    2024年4月13日
    1.3K00
  • Oinone开发的业务应用部署与升级

    应用部署 中间件及资源要求 用Oinone开发的业务工程后端本质是一个Springboot工程,其部署方式与其他Springboot工程类似; 中间件及版本 Oinone支持的操作系统和中间件版本参考:https://doc.oinone.top/install/middleware/20713.html Oinone启动最小集 包括:Java, MySQL、zk,redis和nginx(或其他httpserver) 中间件 版本 说明 Java(jdk) 1.8 1.8_221+,低于这个版本需要覆盖JCE Reids 4.x、5.x Nginx 版本无特殊要求 MySQL 5.7.x, 8.0.x 推荐8.0.x zk 3.4.x, 3.5.x RocketMQ 4.x,推荐4.7+ 按需安装 硬件资源建议 这里列出的资源列表仅是建议值;实际情况需根据业务数据量和用户访问量进行综合评估。 总体说明:线上部署时数据库强烈建议使用云资源 或者 公司提供的公共资源,并配置完整的数据备份策略(线上环境数据备份很重要) 推荐指标:考虑系统余量(内存峰值使用率<=85%,硬盘三年的使用量<=80%) Oinone业务应用部署,所需要的中间件与用标准的SpringBoot工程相比,并无多大的区别(对Redis性能要求稍等高点,其他的中间件参考项目部署的资源就可以)。下面列举出来的资源是预估值,实际项目可以根据访问量等做对应的调整。 组件 CPU核数 内存 硬盘 实例数 说明 Nginx – – 5G 1 静态资源 zk 2c 1.5G+ 20G 1/3 建议集群版安装 Redis 2c 8G+ 20G 1 可自己搭建,也可用云上资源 MySQL 4c 8G+ 300G+ 1 使用已有资源/云资源, 建议使用云资源 OSS 2c 4G – 1. 使用云上资源或搭建MINIO Oinone业务应用 4c 8G 50G 部署包数 * 2+ 项目初期业务访问量不大的情况下,高可用的场景初期可以使用 2台 4c16G的机器; 不考虑高可用的情况 1台 4c16G机器;强烈建议线上使用高可用的部署策略 后端部署 设计器页面数据导出 若项目中没有用到界面设计器设计器页面,则忽略该步骤。 1、项目中有用到界面设计器设计器页面,首先需要把设计页面导出1.1 通过接口的方式执行导出, 并把调用页面导出的结果JSON数据保存下来; 先执行登录 mutation { pamirsUserTransientMutation { login(user: { login: "admin", password: "admin" }) { needRedirect broken errorMsg errorCode errorField } } } 执行界面数据导出,请求示例: mutation { uiDesignerExportReqMutation { export( data: { module: "demo_core", fileName: "demo_meta", moduleBasics: false } ) { jsonUrl } } } 更多导出方式(如:按菜单导出、按页面导出),参考: https://doc.oinone.top/designer/uidesigner/7294.html 1.2 在应用中心执行导出导出成功后,在应用环境的设计导出中找到导入记录,把到处结果的JSON文件保存下来; 目标环境有设计器 数据数据在应用中心可视化的方式进行设计数据的导入和导出 业务工程中导入设计页面数据 后端工程中把界面设计器的页面数据导入,若无通过界面设计器设计页面时忽略 把上面导出的页面数据(JSON文件)放入到resources目录下,如防止的位置:resources/install/hr_demo_ui.json 业务工程中导入示例代码 package pro.shushi.pamirs.hr.core.init; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.core.annotation.Order; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.hr.api.HrSimpleModule; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerInstallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInstallHelper; import java.util.Map; @Slf4j @Order(Integer.MAX_VALUE-1) @Component public class DemoAppMetaInstall implements MetaDataEditor {…

    2025年3月18日
    90600
  • 项目中工作流引入和流程触发

    目录 1. 使用工作流需要依赖的包和设置2. 触发方式2.1 自动触发方式2.2 触发方式 1.使用工作流需要依赖的包和设置 1.1 工作流需要依赖的模块 需在pom.xml中增加workflow、sql-record和trigger相关模块的依赖 workflow:工作流运行核心模块 sql-record:监听流程发布以后对应模型的增删改监听 trigger:异步任务调度模块 <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-api</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> 在application.yml中增加对应模块的依赖以及sql-record路径以及其他相关设置 pamirs: … record: sql: #改成自己路径 store: /opt/pamirs/logs … boot: init: true sync: true modules: … – sql_record – trigger – workflow … sharding: define: data-sources: ds: pamirs models: "[trigger.PamirsSchedule]": tables: 0..13 event: enabled: true schedule: enabled: true # ownSign区分不同应用 ownSign: demo rocket-mq: # enabled 为 false情况不用配置 namesrv-addr: 192.168.6.2:19876 trigger: auto-trigger: true 2.触发方式 2.1自动触发方式 在流程设计器中设置触发方式,如果设置了代码触发方式则不会自动触发 2.2代码调用方式触发 2.2.1.再流程设计器中触发设置中,设置为是否人工触发设置为是 2.2.2.查询数据库获取该流程的编码 2.2.3.在代码中调用 /** * 触发⼯作流实例 */ private Boolean startWorkflow(WorkflowD workflowD, IdModel modelData) { WorkflowDefinition workflowDefinition = new WorkflowDefinition().queryOneByWrapper( Pops.<WorkflowDefinition>lambdaQuery() .from(WorkflowDefinition.MODEL_MODEL) .eq(WorkflowDefinition::getWorkflowCode, workflowD.getCode()) .eq(WorkflowDefinition::getActive, 1) ); if (null == workflowDefinition) { // 流程没有运⾏实例 return Boolean.FALSE; } String model = Models.api().getModel(modelData); //⼯作流上下⽂ WorkflowDataContext wdc = new WorkflowDataContext(); wdc.setDataType(WorkflowVariationTypeEnum.ADD); wdc.setModel(model); wdc.setWorkflowDefinitionDefinition(workflowDefinition.parseContent()); wdc.setWorkflowDefinition(workflowDefinition); wdc.setWorkflowDefinitionId(workflowDefinition.getId()); IdModel copyData = KryoUtils.get().copy(modelData); // ⼿动触发创建的动作流,将操作⼈设置为当前⽤户,作为流程的发起⼈ copyData.setCreateUid(PamirsSession.getUserId()); copyData.setWriteUid(PamirsSession.getUserId()); String jsonData = JsonUtils.toJSONString(copyData.get_d()); //触发⼯作流 新增时触发-onCreateManual 更新时触发-onUpdateManual Fun.run(WorkflowModelTriggerFunction.FUN_NAMESPACE, "onCreateManual", wdc, msgId, jsonData); return Boolean.TRUE; }

    2023年11月7日
    1.4K00
  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.7K00

Leave a Reply

登录后才能评论