【PostgreSQL】后端部署使用PostgreSQL数据库

PostgreSQL数据库配置

驱动配置

Maven配置(14.3版本可用)
<postgresql.version>42.6.0</postgresql.version>

<dependency>
    <groupId>org.postgresql</groupId>
    <artifactId>postgresql</artifactId>
    <version>${postgresql.version}</version>
</dependency>
离线驱动下载

postgresql-42.2.18.jar
postgresql-42.6.0.jar
postgresql-42.7.3.jar

JDBC连接配置

pamirs:
  datasource:
    base:
      type: com.alibaba.druid.pool.DruidDataSource
      driverClassName: org.postgresql.Driver
      url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=base
      username: xxxxxx
      password: xxxxxx

连接url配置

暂无官方资料

url格式
jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema}

在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。

其他连接参数如需配置,可自行查阅相关资料进行调优。

方言配置

pamirs方言配置
pamirs:
  dialect:
    ds:
      base:
        type: PostgreSQL
        version: 14
        major-version: 14.3
      pamirs:
        type: PostgreSQL
        version: 14
        major-version: 14.3
数据库版本 type version majorVersion
14.x PostgreSQL 14 14.3

PS:由于方言开发环境为14.3版本,其他类似版本(14.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。

schedule方言配置
pamirs:
  event:
    enabled: true
    schedule:
      enabled: true
      dialect:
        type: PostgreSQL
        version: 14
        major-version: 14.3
type version majorVersion
PostgreSQL 14 14.3

PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。

其他配置

逻辑删除的值配置
pamirs:
  mapper:
    global:
      table-info:
        logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint
PostgreSQL数据库用户初始化及授权
-- init root user (user name can be modified by oneself)

CREATE USER root WITH PASSWORD 'password';

-- if using automatic database and schema creation, this is very important.
ALTER USER root CREATEDB;

SELECT * FROM pg_roles;

-- if using postgres database, this authorization is required.
GRANT CREATE ON DATABASE postgres TO root;

Oinone社区 作者:oinone原创文章,如若转载,请注明出处:https://doc.oinone.top/install/50.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
oinone的头像oinone
上一篇 2023年6月20日 pm4:07
下一篇 2023年11月2日 pm1:58

相关推荐

  • Oinone开发的业务应用部署与升级

    应用部署 中间件及资源要求 用Oinone开发的业务工程后端本质是一个Springboot工程,其部署方式与其他Springboot工程类似; 中间件及版本 Oinone支持的操作系统和中间件版本参考:https://doc.oinone.top/install/middleware/20713.html Oinone启动最小集 包括:Java, MySQL、zk,redis和nginx(或其他httpserver) 中间件 版本 说明 Java(jdk) 1.8 1.8_221+,低于这个版本需要覆盖JCE Reids 4.x、5.x Nginx 版本无特殊要求 MySQL 5.7.x, 8.0.x 推荐8.0.x zk 3.4.x, 3.5.x RocketMQ 4.x,推荐4.7+ 按需安装 硬件资源建议 这里列出的资源列表仅是建议值;实际情况需根据业务数据量和用户访问量进行综合评估。 总体说明:线上部署时数据库强烈建议使用云资源 或者 公司提供的公共资源,并配置完整的数据备份策略(线上环境数据备份很重要) 推荐指标:考虑系统余量(内存峰值使用率<=85%,硬盘三年的使用量<=80%) Oinone业务应用部署,所需要的中间件与用标准的SpringBoot工程相比,并无多大的区别(对Redis性能要求稍等高点,其他的中间件参考项目部署的资源就可以)。下面列举出来的资源是预估值,实际项目可以根据访问量等做对应的调整。 组件 CPU核数 内存 硬盘 实例数 说明 Nginx – – 5G 1 静态资源 zk 2c 1.5G+ 20G 1/3 建议集群版安装 Redis 2c 8G+ 20G 1 可自己搭建,也可用云上资源 MySQL 4c 8G+ 300G+ 1 使用已有资源/云资源, 建议使用云资源 OSS 2c 4G – 1. 使用云上资源或搭建MINIO Oinone业务应用 4c 8G 50G 部署包数 * 2+ 项目初期业务访问量不大的情况下,高可用的场景初期可以使用 2台 4c16G的机器; 不考虑高可用的情况 1台 4c16G机器;强烈建议线上使用高可用的部署策略 后端部署 设计器页面数据导出 若项目中没有用到界面设计器设计器页面,则忽略该步骤。 1、项目中有用到界面设计器设计器页面,首先需要把设计页面导出1.1 通过接口的方式执行导出, 并把调用页面导出的结果JSON数据保存下来; 先执行登录 mutation { pamirsUserTransientMutation { login(user: { login: "admin", password: "admin" }) { needRedirect broken errorMsg errorCode errorField } } } 执行界面数据导出,请求示例: mutation { uiDesignerExportReqMutation { export( data: { module: "demo_core", fileName: "demo_meta", moduleBasics: false } ) { jsonUrl } } } 更多导出方式(如:按菜单导出、按页面导出),参考: https://doc.oinone.top/designer/uidesigner/7294.html 1.2 在应用中心执行导出导出成功后,在应用环境的设计导出中找到导入记录,把到处结果的JSON文件保存下来; 目标环境有设计器 数据数据在应用中心可视化的方式进行设计数据的导入和导出 业务工程中导入设计页面数据 后端工程中把界面设计器的页面数据导入,若无通过界面设计器设计页面时忽略 把上面导出的页面数据(JSON文件)放入到resources目录下,如防止的位置:resources/install/hr_demo_ui.json 业务工程中导入示例代码 package pro.shushi.pamirs.hr.core.init; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.ApplicationContext; import org.springframework.core.annotation.Order; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.hr.api.HrSimpleModule; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.metadata.manager.core.helper.DesignerInstallHelper; import pro.shushi.pamirs.metadata.manager.core.helper.WidgetInstallHelper; import java.util.Map; @Slf4j @Order(Integer.MAX_VALUE-1) @Component public class DemoAppMetaInstall implements MetaDataEditor {…

    2025年3月18日
    87400
  • 如何选择适合的模型类型?

    介绍 通过Oinone 7天从入门到精通的模型的类型章节我们可以知道模型有抽象模型、存储模型、代理模型、传输模型这四种。但是在在定义模型的时候我们可能不知道该如何选择类型,下面结合业务场景为大家讲解几种模型的典型使用场景。 抽象模型 抽象模型往往是提供公共能力和字段的模型,它本身不会直接用于构建协议和基础设施(如表结构等)。 场景:猫、鸟都继承自动物这个抽象模型 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.sys.Base; import pro.shushi.pamirs.meta.base.IdModel; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Base @Model.model(AbstractAnimal.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.ABSTRACT) @Model(displayName = "动物") public abstract class AbstractAnimal extends IdModel { public static final String MODEL_MODEL = "demo.AbstractAnimal"; @Field.String @Field(displayName = "名称") private String name; @Field.String @Field(displayName = "颜色") private String color; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Cat.MODEL_MODEL) @Model(displayName = "猫") public class Cat extends AbstractAnimal { private static final long serialVersionUID = -5104390780952634397L; public static final String MODEL_MODEL = "demo.Cat"; @Field.Integer @Field(displayName = "尾巴长度") private Integer tailLength; } package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(Bird.MODEL_MODEL) @Model(displayName = "鸟") public class Bird extends AbstractAnimal { private static final long serialVersionUID = -5144390780952634397L; public static final String MODEL_MODEL = "demo.Bird"; @Field.Integer @Field(displayName = "翼展宽度") private Integer wingSpanWidth; } 存储模型 存储模型用于定义数据表结构和数据的增删改查(数据管理器)功能,是直接与连接器进行交互的数据容器。 场景:存储模型对应传统开发模式中的数据表,上面例子中的Cat和Birdd都属于传输模型,由于模型定义的注解@Model.Advanced(type = ModelTypeEnum.STORE)默认值就是存储模型,所以一般不用手动指定 代理模型 代理模型是用于代理存储模型的数据管理器能力,同时又可以扩展出非存储数据信息的交互功能的模型。 场景一:隔离数据权限 场景二:增强列表的搜索项 场景三:导入导出的时候增加其他特殊信息 场景四:重写下拉组件的查询逻辑做数据过滤 传输模型 传输模型不会在数据库生成的表,只是作为数据的传输使用,跟传统开发模式中的DTO有一点相似。 场景一:批量处理数据 场景二:处理一些跟数据表无关的操作,如:清理指定业务的缓存、查看一些系统监控信息,可以根据业务信息建立对应的传输模型,在传输模型上创建action动作 场景三:通过传输模型完成复杂页面数据传输

    2024年4月7日
    1.4K00
  • Oinone引入搜索引擎(增强模型)

    场景描述 在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch; 使用前你应该 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/ 有一个可用的ElasticSearch环境(本地项目能引用到) 前置约束 增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。 项目引入搜索步骤 1、boot工程加入相关依赖包 boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本 boot工程加入pamris-channel的工程依赖 <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-client</artifactId> <version>8.4.1</version> </dependency> <dependency> <groupId>jakarta.json</groupId> <artifactId>jakarta.json-api</artifactId> <version>2.1.1</version> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-core</artifactId> </dependency> 2、api工程加入相关依赖包 在XXX-api中增加入pamirs-channel-api的依赖 <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-channel-api</artifactId> </dependency> 3、yml文件配置 在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致 pamirs: record: sql: #改成自己本地路径(或服务器路径) store: /Users/oinone/record boot: modules: – channel ## 确保也安装了sql_record – sql_record channel: packages: # 增强模型扫描包配置 – com.xxx.xxx elastic: url: 127.0.0.1:9200 4、项目的模块增加模块依赖 XXXModule增加对ChannelModule的依赖 @Module(dependencies = {ChannelModule.MODULE_MODULE}) 5、增加增强模型(举例) package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; } 6、重启系统看效果 1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据 2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作 个性化dump逻辑 通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。 重写ShardingModelEnhance模型的synchronize方法 重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】 package pro.shushi.pamirs.demo.api.enhance; import pro.shushi.pamirs.channel.enmu.IncrementEnum; import pro.shushi.pamirs.channel.meta.Enhance; import pro.shushi.pamirs.channel.meta.EnhanceModel; import pro.shushi.pamirs.demo.api.model.ShardingModel; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ModelTypeEnum; import java.util.List; @Model(displayName = "测试EnhanceModel") @Model.model(ShardingModelEnhance.MODEL_MODEL) @Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL}) @Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN) public class ShardingModelEnhance extends ShardingModel { public static final String MODEL_MODEL="demo.ShardingModelEnhance"; @Field(displayName = "nick") private String nick;…

    2024年5月14日
    1.9K00
  • 缓存连接由Jedis切换为Lettuce

    Jedis和Lettuce的区别 Jedis是同步的,不支持异步,Jedis客户端实例不是线程安全的,需要每个线程一个Jedis实例,所以一般通过连接池来使用Jedis; Lettuce是基于Netty框架的事件驱动的Redis客户端,其方法调用是异步的,Lettuce的API也是线程安全的,所以多个线程可以操作单个Lettuce连接来完成各种操作,同时Lettuce也支持连接池; Jedis切换Lettuce 依赖修改boot启动工程pom.xml改动 properties <lettuce.version>5.3.6.RELEASE</lettuce.version> <commons-pool2.version>2.8.1</commons-pool2.version> dependencies <dependency> <groupId>pro.shushi.pamirs.framework</groupId> <artifactId>pamirs-connectors-data-api</artifactId> <exclusions> <exclusion> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>io.lettuce</groupId> <artifactId>lettuce-core</artifactId> <version>${lettuce.version}</version> </dependency> <dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-pool2</artifactId> <version>${commons-pool2.version}</version> </dependency> 配置修改application.yml配置修改 spring: redis: database: 0 host: 127.0.0.1 port: 6379 prefix: pamirs timeout: 2000 # 可选 password: xxxxx # 可选 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 lettuce: pool: enable: true max-idle: 16 min-idle: 1 max-active: 16 max-wait: 2000

    2024年2月2日
    90600
  • Oinone请求路由源码分析

    通过源码分析,从页面发起请求,如果通过graphQL传输到具体action的链路,并且在这之间做了哪些隐式处理分析源码版本5.1.x 请求流程大致如下: 拦截所有指定的请求 组装成graphQL请求信息 调用graphQL执行 通过hook拦截先执行 RsqlDecodeHook:rsql解密 UserHook: 获取用户信息, 通过cookies获取用户ID,再查表获取用户信息,放到本地Local线程里 RoleHook: 角色Hook FunctionPermissionHook: 函数权限Hook ,跳过权限拦截的实现放在这一层,对应的配置 pamirs: auth: fun-filter: – namespace: user.PamirsUserTransient fun: login #登录 – namespace: top.PetShop fun: action DataPermissionHook: 数据权限hook PlaceHolderHook:占位符转化替换hook RsqlParseHook: 解释Rsql hook SingletonModelUpdateHookBefore 执行post具体内容 通过hook拦截后执行 QueryPageHook4TreeAfter: 树形Parent查询优化 FieldPermissionHook: 字段权限Hook UserQueryPageHookAfter UserQueryOneHookAfter 封装执行结果信息返回 时序图 核心源码解析 拦截所有指定的请求 /pamirs/模块名RequestController @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { } DefaultRequestExecutor 构建graph请求信息,并调用graph请求 () -> execute(GraphQL::execute, param), param private <T> T execute(BiFunction<GraphQL, ExecutionInput, T> executor, PamirsRequestParam param) { // 获取GraphQL请求信息,包含grapsh schema GraphQL graphQL = buildGraphQL(param); … ExecutionInput executionInput = ExecutionInput.newExecutionInput() .query(param.getQuery()) .variables(param.getVariables().getVariables()) .dataLoaderRegistry(Spider.getDefaultExtension(DataLoaderRegistryApi.class).dataLoader()) .build(); … // 调用 GraphQL的方法execute 执行 T result = executor.apply(graphQL, executionInput); … return result; } QueryAndMutationBinder 绑定graphQL读取写入操作 public static DataFetcher<?> dataFetcher(Function function, ModelConfig modelConfig) { if (isAsync()) { if (FunctionTypeEnum.QUERY.in(function.getType())) { return AsyncDataFetcher.async(dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment), ExecutorServiceApi.getExecutorService()); } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } else { return dataFetchingEnvironment -> dataFetcherAction(function, modelConfig, dataFetchingEnvironment); } } private static Object dataFetcherAction(Function function, ModelConfig modelConfig, DataFetchingEnvironment environment) { try { SessionExtendUtils.tagMainRequest(); // 使用共享的请求和响应对象 return Spider.getDefaultExtension(ActionBinderApi.class) .action(modelConfig,…

    2024年8月21日
    5.6K02

Leave a Reply

登录后才能评论