框架之MessageHub(信息提示)

框架之信息概述

后端除了可以返回错误信息以外,还可以返回调试、告警、成功、信息等级别的信息给前端。但是默认情况下前端只提示错误信息,可以通过前端的统一配置放开提示级别,有点类似后端的日志级别。

框架之MessageHub

在oinone平台中,我们怎么做到友好的错误提示呢?接下来介绍我们的MessageHub,它为自定义错误提示提供无限的可能。

何时使用

错误提示是用户体验中特别重要的组成部分,大部分的错误体现在整页级别,字段级别,按钮级别。友好的错误提示应该是怎么样的呢?我们假设他是这样的

  • 与用户操作精密契合
    • 当字段输入异常时,错误展示在错误框底部
    • 按钮触发服务时异常,错误展示在按钮底部
  • 区分不同的类型
    • 错误
    • 成功
    • 警告
    • 提示
    • 调试
  • 简洁易懂的错误信息

不同信息类型的举例

package pro.shushi.pamirs.demo.core.action;

import org.springframework.stereotype.Component;
import pro.shushi.pamirs.demo.api.model.PetCatItem;
import pro.shushi.pamirs.demo.api.model.PetType;
import pro.shushi.pamirs.meta.annotation.Action;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.api.dto.common.Message;
import pro.shushi.pamirs.meta.api.session.PamirsSession;
import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum;
import pro.shushi.pamirs.meta.enmu.InformationLevelEnum;
import pro.shushi.pamirs.meta.enmu.ViewTypeEnum;

@Model.model(PetType.MODEL_MODEL)
@Component
public class PetTypeAction {

    @Action(displayName = "消息",bindingType = ViewTypeEnum.TABLE,contextType = ActionContextTypeEnum.CONTEXT_FREE)
    public PetType message(PetType data){
        PamirsSession.getMessageHub().info("info1");
        PamirsSession.getMessageHub().info("info2");
        PamirsSession.getMessageHub().error("error1");
        PamirsSession.getMessageHub().error("error2");
        PamirsSession.getMessageHub().msg(new Message().msg("success1").setLevel(InformationLevelEnum.SUCCESS));
        PamirsSession.getMessageHub().msg(new Message().msg("success2").setLevel(InformationLevelEnum.SUCCESS));
        PamirsSession.getMessageHub().msg(new Message().msg("debug1").setLevel(InformationLevelEnum.DEBUG));
        PamirsSession.getMessageHub().msg(new Message().msg("debug2").setLevel(InformationLevelEnum.DEBUG));
        PamirsSession.getMessageHub().msg(new Message().msg("warn1").setLevel(InformationLevelEnum.WARN));
        PamirsSession.getMessageHub().msg(new Message().msg("warn2").setLevel(InformationLevelEnum.WARN));
        return data;
    }
}

查询运行返回和效果

1)系统提示的返回结果
框架之MessageHub(信息提示)

2)系统提示示例效果
框架之MessageHub(信息提示)

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7237.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月14日 pm10:04
下一篇 2024年5月15日 pm7:27

相关推荐

  • 工作流-流程代办等页面自定义

    1. 审批/填写节点的视图页面 在界面设计器中创建对应模型的表单视图,可根据业务场景需要自定义所需流程待办的审批页面 2. 在审批/填写节点中选择刚创建的视图 在工作流待办数据权限可在节点数据权限中可对字段设置查看、编辑、隐藏

    2024年5月14日
    1.6K00
  • Dubbo配置详解

    概述 Dubbo是一款高性能、轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现。 Oinone平台默认使用dubbo-v2.7.22版本,本文以该版本为例进行描述。 基本概念 Dubbo在注册provider/consumer时使用Netty作为RPC调用的核心服务,其具备客户端/服务端(C/S)的基本特性。即:provider作为服务端,consumer作为客户端。 客户端通过服务中心发现有服务可被调用时,将通过服务中心提供的服务端调用信息,连接服务端并发起请求,从而实现远程调用。 服务注册(绑定Host/Port) JAVA程序启动时,需要将provider的信息注册到服务中心,并在当前环境为Netty服务开启Host/Port监听,以实现服务注册功能。 在下文中,我们通过绑定Host/Port表示Netty服务的访问地址,通过注册Host/Port表示客户端的访问地址。 使用yaml配置绑定Host/Port PS:该配置可在多种环境中通用,改变部署方式无需修改此配置。 dubbo: protocol: name: dubbo # host: 0.0.0.0 port: -1 假设当前环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20880地址,服务注册地址为192.168.1.100:20880 客户端将通过192.168.1.100:20880调用服务端服务 若发生20880端口占用,则自动向后查找可用端口。如20881、20882等等 若当前可用端口为20881,则以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 使用环境变量配置注册Host/Port 当服务端被放置在容器环境中时,由于容器环境的特殊性,其内部的网络配置相对于宿主机而言是独立的。因此为保证客户端可以正常调用服务端,还需在容器中配置环境变量,以确保客户端可以通过指定的注册Host/Port进行访问。 以下示例为体现无法使用20880端口的情况,将宿主机可访问端口从20880改为20881。 DUBBO_IP_TO_REGISTRY=192.168.1.100 DUBBO_PORT_TO_REGISTRY=20881 假设当前宿主机环境的可用IP为192.168.1.100 以上配置将使得Netty服务默认绑定在0.0.0.0:20881地址,服务注册地址为192.168.1.100:20881 客户端将通过192.168.1.100:20881调用服务端服务 使用docker/docker-compose启动 需添加端口映射,将20881端口映射至宿主机20881端口。(此处容器内的端口发生变化,若需要了解具体原因,可参考题外话章节) docker-run IP=192.168.1.100 docker run -d –name designer-allinone-full \ -e DUBBO_IP_TO_REGISTRY=$IP \ -e DUBBO_PORT_TO_REGISTRY=20881 \ -p 20881:20881 \ docker-compose services: backend: container_name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 restart: always environment: DUBBO_IP_TO_REGISTRY: 192.168.1.100 DUBBO_PORT_TO_REGISTRY: 20881 ports: – 20881:20881 # dubbo端口 使用kubernetes启动 工作负载(Deployment) kind: Deployment apiVersion: apps/v1 spec: replicas: 1 template: spec: containers: – name: designer-backend image: harbor.oinone.top/oinone/designer-backend-v5.0 ports: – name: dubbo containerPort: 20881 protocol: TCP env: – name: DUBBO_IP_TO_REGISTRY value: "192.168.1.100" – name: DUBBO_PORT_TO_REGISTRY value: "20881" 服务(Services) kind: Service apiVersion: v1 spec: type: NodePort ports: – name: dubbo protocol: TCP port: 20881 targetPort: dubbo nodePort: 20881 PS:此处的targetPort为对应Deployment#spec. template.spec.containers.ports.name配置的端口名称。若未配置,可使用20881直接指定对应容器的端口号。 使用kubernetes其他暴露服务方式 在Kubernetes中部署服务,有多种配置方式均可用暴露服务。上述配置仅用于通过Service/NodePort将20881端口暴露至宿主机,其他服务可用通过任意Kubernetes节点IP进行调用。 若其他服务也在Kubernetes中进行部署,则可以通过Service/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为${serviceName}.${namespace}即可。 若其他服务无法直接访问Kubernetes的master服务,则可以通过Ingress/Service方式进行调用。将DUBBO_IP_TO_REGISTRY配置为Ingress可解析域名即可。 Dubbo调用链路图解 PS: Consumer的绑定Host/Port是其作为Provider使用的,下面所有图解仅演示单向的调用链路。 名词解释 Provider: 服务提供者(JVM) Physical Machine Provider: 服务提供者所在物理机 Provider Container: 服务提供者所在容器 Kubernetes Service: Kubernetes Service资源类型 Consumer: 服务消费者(JVM) Registration Center: 注册中心;可以是zookeeper、nacos等。 bind: 服务绑定Host/Port到指定ip:port。 registry: 服务注册;注册Host/Port到注册中心的信息。 discovery: 服务发现;注册Host/Port到消费者的信息。 invoke: 服务调用;消费者通过注册中心提供的提供者信息向提供者发起服务调用。 forward: 网络转发;通常在容器环境需要进行必要的网络转发,以使得服务调用可以到达服务提供者。 物理机/物理机调用链路 “` mermaidsequenceDiagram participant p as Provider<br>(bind 0.0.0.0:20880)participant m as Physical Machine Provider<br>(bind 192.168.1.100:20881)participant…

    2024年8月10日
    1.7K00
  • 如何在代码中使用自增ID和获取序列

    在使用继承IDModel或CodeModel时,id和code是系统默认自动生成, 默认值规则:ID–>分布式ID; CODE–>根据定义的SequenceConfig规则自动生成。 在特定情况下需要落库前先生成ID或者Code,这些场景下可参照如下代码示例 一、使用自增ID 单个字段设置方式 // 主键字段,可以使用mysql的自增能力 @Field.Integer @Field.PrimaryKey(keyGenerator = KeyGeneratorEnum.AUTO_INCREMENT) @Field.Advanced(batchStrategy = FieldStrategyEnum.NEVER) @Field(displayName = "id", summary = "Id字段,⾃增") private Long id; @Field.Integer @Field(displayName = "自增版本") @Field.Sequence(sequence = "SEQ", initial = 1) private Long version; 全局设置方式 该方式会作用到每一个存储模型的id字段,在application.yml配置文件中修改id的生成规则,查找配置项关键字key-generator,默认为DISTRIBUTION(分布式id),可修改为 AUTO_INCREMENT(自增id) 二、手动方式获取序列 获取方式示例1 /** * 在特定场景下需要手动生成Id或者code时,可参照这个示例 */ public void manualSetIdCode(){ DemoItem demoItem = new DemoItem(); //手动生成ID和code Object idObj = Spider.getDefaultExtension(IdGenerator.class).generate(PamirsTableInfo.fetchKeyGenerator(DemoItem.MODEL_MODEL)); demoItem.setId(TypeUtils.createLong(idObj)); Object codeObj = CommonApiFactory.getSequenceGenerator().generate("SEQ",DemoItem.MODEL_MODEL); String code = TypeUtils.stringValueOf(codeObj); demoItem.setCode(code); //…… } 获取方式示例2 1、在系统启动的时候初始化SequenceConfig package pro.shushi.pamirs.demo.core.init; import org.springframework.stereotype.Component; import pro.shushi.pamirs.boot.common.api.command.AppLifecycleCommand; import pro.shushi.pamirs.boot.common.extend.MetaDataEditor; import pro.shushi.pamirs.core.common.InitializationUtil; import pro.shushi.pamirs.demo.api.DemoModule; import pro.shushi.pamirs.demo.core.constant.SeqConstants; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.meta.Meta; import pro.shushi.pamirs.meta.enmu.SequenceEnum; import java.util.Map; /** * DemoMetadataEditor */ @Slf4j @Component public class DemoMetadataEditor implements MetaDataEditor { @Override public void edit(AppLifecycleCommand command, Map<String, Meta> metaMap) { InitializationUtil util = InitializationUtil.get(metaMap, DemoModule.MODULE_MODULE, DemoModule.MODULE_NAME); if (util == null) { log.error("获取初始化序列失败"); return; } bizSequence(util); } private void bizSequence(InitializationUtil util) { util.createSequenceConfig("申请单编码生成", SeqConstants.NABEL_SAMPLE_APPLY_SEQ, SequenceEnum.ORDERLY_SEQ, 8) .setStep(1) .setInitial(80000000L) .setIsRandomStep(false); util.createSequenceConfig("订单编码生成", SeqConstants.NABEL_SAMPLE_ORDER_SEQ_YP, SequenceEnum.ORDERLY_SEQ, 8) .setPrefix("YP") .setStep(1) .setInitial(80000000L) .setIsRandomStep(false); } } 2、在代码中使用序列 public static String getSaleOrderCode() { Object sequence = CommonApiFactory.getSequenceGenerator().generate(SequenceEnum.ORDERLY_SEQ.value(), SeqConstants.NABEL_SAMPLE_STRUCTURE_SEQ); return TypeUtils.stringValueOf(sequence); } public static String getApplyOrderCode(String prefix) { Object sequence = CommonApiFactory.getSequenceGenerator().generate(SequenceEnum.ORDERLY_SEQ.value(), SeqConstants.NABEL_SAMPLE_APPLY_SEQ); return…

    2024年5月25日
    1.8K00
  • 项目中工作流引入和流程触发

    目录 1. 使用工作流需要依赖的包和设置2. 触发方式2.1 自动触发方式2.2 触发方式 1.使用工作流需要依赖的包和设置 1.1 工作流需要依赖的模块 需在pom.xml中增加workflow、sql-record和trigger相关模块的依赖 workflow:工作流运行核心模块 sql-record:监听流程发布以后对应模型的增删改监听 trigger:异步任务调度模块 <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-api</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> 在application.yml中增加对应模块的依赖以及sql-record路径以及其他相关设置 pamirs: … record: sql: #改成自己路径 store: /opt/pamirs/logs … boot: init: true sync: true modules: … – sql_record – trigger – workflow … sharding: define: data-sources: ds: pamirs models: "[trigger.PamirsSchedule]": tables: 0..13 event: enabled: true schedule: enabled: true # ownSign区分不同应用 ownSign: demo rocket-mq: # enabled 为 false情况不用配置 namesrv-addr: 192.168.6.2:19876 trigger: auto-trigger: true 2.触发方式 2.1自动触发方式 在流程设计器中设置触发方式,如果设置了代码触发方式则不会自动触发 2.2代码调用方式触发 2.2.1.再流程设计器中触发设置中,设置为是否人工触发设置为是 2.2.2.查询数据库获取该流程的编码 2.2.3.在代码中调用 /** * 触发⼯作流实例 */ private Boolean startWorkflow(WorkflowD workflowD, IdModel modelData) { WorkflowDefinition workflowDefinition = new WorkflowDefinition().queryOneByWrapper( Pops.<WorkflowDefinition>lambdaQuery() .from(WorkflowDefinition.MODEL_MODEL) .eq(WorkflowDefinition::getWorkflowCode, workflowD.getCode()) .eq(WorkflowDefinition::getActive, 1) ); if (null == workflowDefinition) { // 流程没有运⾏实例 return Boolean.FALSE; } String model = Models.api().getModel(modelData); //⼯作流上下⽂ WorkflowDataContext wdc = new WorkflowDataContext(); wdc.setDataType(WorkflowVariationTypeEnum.ADD); wdc.setModel(model); wdc.setWorkflowDefinitionDefinition(workflowDefinition.parseContent()); wdc.setWorkflowDefinition(workflowDefinition); wdc.setWorkflowDefinitionId(workflowDefinition.getId()); IdModel copyData = KryoUtils.get().copy(modelData); // ⼿动触发创建的动作流,将操作⼈设置为当前⽤户,作为流程的发起⼈ copyData.setCreateUid(PamirsSession.getUserId()); copyData.setWriteUid(PamirsSession.getUserId()); String jsonData = JsonUtils.toJSONString(copyData.get_d()); //触发⼯作流 新增时触发-onCreateManual 更新时触发-onUpdateManual Fun.run(WorkflowModelTriggerFunction.FUN_NAMESPACE, "onCreateManual", wdc, msgId, jsonData); return Boolean.TRUE; }

    2023年11月7日
    1.5K00
  • 工作流审核撤回/回退/拒绝/同意/反悔钩子使用

    目录 1. 流程撤回、拒绝和回退调用自定义函数1.1 工作流【撤销】回调钩子1.2 撤销【回退】回调钩子1.3 工作流【拒绝】回调钩子1.4 工作流【同意】回调钩子1.4 工作流【反悔】回调钩子1.4 回调钩子在业务系统中的调用示例2. 自定义审批方式、自定义审批节点名称 1.流程撤回、拒绝和回退调用自定义函数 1.1工作流【撤销】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:当流程实例被撤销时调用入口:pro.shushi.pamirs.workflow.app.core.service.impl.WorkflowInstanceServiceImpl#undoInstance /** * XXX为当前流程触发方式为模型触发时对应的触发模型、 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX recall(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.2撤销【回退】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行回退操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX fallBack(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.3工作流【拒绝】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行拒绝操作时调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ApprovalFallbackOperatorService /** * XXX为当前流程触发方式为模型触发时对应的触发模型 * 对应返回不影响流程上下文 * @param data 入参为触发时的业务数据,数据的JsonString * @return */ @Function public XXX reject(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new XXX(); } 1.4 工作流【同意】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行同意操作时调用入口:pro.shushi.pamirs.workflow.app.core.util.ArtificialTaskUtils @Function(summary = "发起的审批同意时会自动调用此方法") @Function.Advanced(displayName = "审批同意") public Teacher agree(String data) { // TODO: 根据实际的业务逻辑把data转换为对象 // WorkRecord workRecord = JsonUtils.parseObject(data, new TypeReference<WorkRecord>(){}); // TODO: 增加自定义业务逻辑 return new Teacher(); } 1.4 工作流【反悔】回调钩子 使用方式:把该方法放置到XXX模型的Action下面,或@Fun(XXX.MODEL_MODEL)触发方式:流程待办进行反悔操作时使用场景:流程待办进行反悔操作时,需要额外更改其他的业务数据逻辑时可用该回调钩子。 注意:该函数的namespace需要设置为流程触发模型。 调用入口:pro.shushi.pamirs.workflow.app.core.service.operator.ArtificialRetractOperatorService @Function @Function.fun(WorkflowBizCallConstants.retract) public void retract(WorkflowUserTask workflowUserTask) { // 获取流程实例 workflowUserTask.fieldQuery(WorkflowUserTask::getInstance); WorkflowInstance instance = workflowUserTask.getInstance(); // 获取用户任务实例 WorkflowUserInstance userInstance = new WorkflowUserInstance() .setId(workflowUserTask.getWorkflowUserInstanceId()) .queryById(); // 反悔的用户id…

    2023年11月15日
    1.4K00

Leave a Reply

登录后才能评论