Oinone引入搜索引擎(增强模型)

场景描述

在碰到大数据量并且需要全文检索的场景,我们在分布式架构中基本会架设ElasticSearch来作为一个常规解决方案。在oinone体系中增强模型就是应对这类场景,其背后也是整合了ElasticSearch;

使用前你应该

  • 了解ElasticSearch,包括不限于:Index(索引)、分词、Node(节点)、Document(文档)、Shards(分片) & Replicas(副本)。参考官方网站:https://www.elastic.co/cn/
  • 有一个可用的ElasticSearch环境(本地项目能引用到)

前置约束

增强模型增量依赖数据变更实时消息,因此确保项目的event是开启的,mq配置正确。

项目引入搜索步骤

1、boot工程加入相关依赖包

  • boot工程需要指定ES客户端包版本,不指定版本会隐性依赖顶层spring-boot依赖管理指定的低版本
  • boot工程加入pamris-channel的工程依赖
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-client</artifactId>
    <version>8.4.1</version>
</dependency>
<dependency>
    <groupId>jakarta.json</groupId>
    <artifactId>jakarta.json-api</artifactId>
    <version>2.1.1</version>
</dependency>

<dependency>
    <groupId>pro.shushi.pamirs.core</groupId>
    <artifactId>pamirs-sql-record-core</artifactId>
</dependency>
<dependency>
    <groupId>pro.shushi.pamirs.core</groupId>
    <artifactId>pamirs-channel-core</artifactId>
</dependency>

2、api工程加入相关依赖包

在XXX-api中增加入pamirs-channel-api的依赖

<dependency>
    <groupId>pro.shushi.pamirs.core</groupId>
    <artifactId>pamirs-channel-api</artifactId>
</dependency>

3、yml文件配置

在pamirs-demo-boot的application-dev.yml文件中增加配置pamirs.boot.modules增加channel,即在启动模块中增加channel模块。同时注意es的配置,是否跟es的服务一致

pamirs:
  record:
    sql:
      #改成自己本地路径(或服务器路径)
      store: /Users/oinone/record
  boot:
    modules:
      - channel
      ## 确保也安装了sql_record
      - sql_record
  channel:
    packages:
      # 增强模型扫描包配置
      - com.xxx.xxx
  elastic:
    url: 127.0.0.1:9200

4、项目的模块增加模块依赖

XXXModule增加对ChannelModule的依赖

@Module(dependencies = {ChannelModule.MODULE_MODULE})

5、增加增强模型(举例)

package pro.shushi.pamirs.demo.api.enhance;

import pro.shushi.pamirs.channel.enmu.IncrementEnum;
import pro.shushi.pamirs.channel.meta.Enhance;
import pro.shushi.pamirs.channel.meta.EnhanceModel;
import pro.shushi.pamirs.demo.api.model.ShardingModel;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.enmu.ModelTypeEnum;

@Model(displayName = "测试EnhanceModel")
@Model.model(ShardingModelEnhance.MODEL_MODEL)
@Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL})
@Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN)
public class ShardingModelEnhance extends ShardingModel {
    public static final String MODEL_MODEL="demo.ShardingModelEnhance";
}

6、重启系统看效果

1、进入【传输增强模型】应用,访问增强模型列表我们会发现一条记录,并点击【全量同步】初始化ES,并全量dump数据
Oinone引入搜索引擎(增强模型)

2、再次回到Demo应用,进入增强模型页面,可以正常访问并进增删改查操作
Oinone引入搜索引擎(增强模型)

个性化dump逻辑

通常dump逻辑是有个性化需求,那么我们可以重写模型的synchronize方法,函数重写特性在“面向对象-继承与多态”部分中已经有详细介绍。

重写ShardingModelEnhance模型的synchronize方法

重写后,如果针对老数据记录需要把新增的字段都自动填充,可以进入【传输增强模型】应用,访问增强模型列表,找到对应的记录并点击【全量同步】

package pro.shushi.pamirs.demo.api.enhance;

import pro.shushi.pamirs.channel.enmu.IncrementEnum;
import pro.shushi.pamirs.channel.meta.Enhance;
import pro.shushi.pamirs.channel.meta.EnhanceModel;
import pro.shushi.pamirs.demo.api.model.ShardingModel;
import pro.shushi.pamirs.meta.annotation.Field;
import pro.shushi.pamirs.meta.annotation.Function;
import pro.shushi.pamirs.meta.annotation.Model;
import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum;
import pro.shushi.pamirs.meta.enmu.ModelTypeEnum;

import java.util.List;

@Model(displayName = "测试EnhanceModel")
@Model.model(ShardingModelEnhance.MODEL_MODEL)
@Model.Advanced(type = ModelTypeEnum.PROXY, inherited = {EnhanceModel.MODEL_MODEL})
@Enhance(shards = "3", replicas = "1", reAlias = true,increment= IncrementEnum.OPEN)
public class ShardingModelEnhance extends ShardingModel {
    public static final String MODEL_MODEL="demo.ShardingModelEnhance";

    @Field(displayName = "nick")
    private String nick;

    @Function.Advanced(displayName = "同步数据", type = FunctionTypeEnum.UPDATE)
    @Function(summary = "数据同步函数")
    public List<ShardingModelEnhance> synchronize(List<ShardingModelEnhance> data) {
        for(ShardingModelEnhance shardingModelEnhance:data){
            shardingModelEnhance.setNick(shardingModelEnhance.getName());
        }
        return data;
    }
}

给搜索增加个性化逻辑

如果我们需要在查询方法中增加逻辑,在前面的教程中一般是重写queryPage函数,但对于增强模型我们需要重写的是search函数。

个性化search函数

@Function(
        summary = "搜索函数",
        openLevel = {FunctionOpenEnum.LOCAL, FunctionOpenEnum.REMOTE, FunctionOpenEnum.API}
)
@pro.shushi.pamirs.meta.annotation.Function.Advanced(
        type = {FunctionTypeEnum.QUERY},
        category = FunctionCategoryEnum.QUERY_PAGE,
        managed = true
)
public  Pagination<ShardingModelEnhance> search(Pagination<ShardingModelEnhance> page, IWrapper<ShardingModelEnhance> queryWrapper) {
    System.out.println("您的个性化搜索逻辑");
    return ((IElasticRetrieve) CommonApiFactory.getApi(IElasticRetrieve.class)).search(page, queryWrapper);
}

个性化search函数示例

    @Override
    @SuppressWarnings({"rawtypes"})
    public <T> Pagination<T> search(Pagination<T> page, IWrapper<T> queryWrapper) {
        String modelModel = queryWrapper.getModel();
        if (null == modelModel || modelModel.isEmpty()) {
            return page;
        }
        ModelConfig modelCfg = PamirsSession.getContext().getModelConfig(modelModel);
        if (null == modelCfg) {
            return page;
        }
        String rsql = queryWrapper.getOriginRsql();
        if (StringUtils.isBlank(rsql)) {
            rsql = "id>0";
        }
        BoolQuery.Builder queryBuilder = ElasticRSQLHelper.parseRSQL(modelCfg, rsql);
        TermQuery isDeletedTerm = QueryBuilders.term()
                .queryName(IS_DELETED)
                .field(IS_DELETED).value(0)
                .build();
        BoolQuery.Builder builder = QueryBuilders.bool().must(new Query(queryBuilder.build()));
        builder.must(new Query(isDeletedTerm));
        String alias = IndexNaming.aliasByModel(modelModel);
        Query query = new Query(builder.build());
        log.info("{}", query);

        List<Order> orders = Optional.ofNullable(page.getSort()).map(Sort::getOrders).orElse(new ArrayList<>());
        int currentPage = Optional.ofNullable(page.getCurrentPage()).orElse(1);
        Long size = Optional.ofNullable(page.getSize()).orElse(10L);
        int pageSize = size.intValue();
        List<SortOptions> sortOptions = new ArrayList<>();
        if (CollectionUtils.isEmpty(orders)) {
            orders.add(new Order(SortDirectionEnum.DESC, ID));
            orders.add(new Order(SortDirectionEnum.DESC, CREATE_DATE));
        }
        for (Order order : orders) {
            sortOptions.add(new SortOptions.Builder()
                    .field(SortOptionsBuilders.field()
                            .field(order.getField())
                            .order(SortDirectionEnum.DESC.equals(order.getDirection()) ? SortOrder.Desc : SortOrder.Asc)
                            .build())
                    .build());
        }

        SearchRequest request = new SearchRequest.Builder()
                .index(alias)
                .from((currentPage - 1) * pageSize)
                .size(pageSize)
                .sort(sortOptions)
                .query(query)
                .highlight(_builder ->
                        _builder.numberOfFragments(4)
                                .fragmentSize(50)
                                .type(HighlighterType.Unified)
                                .fields("name", HighlightField.of(_fieldBuilder -> _fieldBuilder.preTags(ElasticsearchConstant.HIGH_LIGHT_PREFIX).postTags(ElasticsearchConstant.HIGH_LIGHT_POSTFIX)))
                                .fields("documentNo", HighlightField.of(_fieldBuilder -> _fieldBuilder.preTags(ElasticsearchConstant.HIGH_LIGHT_PREFIX).postTags(ElasticsearchConstant.HIGH_LIGHT_POSTFIX)))
                                .fields("keywords", HighlightField.of(_fieldBuilder -> _fieldBuilder.preTags(ElasticsearchConstant.HIGH_LIGHT_PREFIX).postTags(ElasticsearchConstant.HIGH_LIGHT_POSTFIX))))
                .build();

        SearchResponse<HashMap> response = null;
        try {
            log.info("ES搜索请求参数:{}", request.toString());
            response = elasticsearchClient.search(request, HashMap.class);
        } catch (ElasticsearchException e) {
            log.error("索引异常", e);
            PamirsSession.getMessageHub()
                    .msg(Message.init()
                            .setLevel(InformationLevelEnum.WARN)
                            .msg("索引异常"));
            return page;
        } catch (IOException e) {
            log.error("ElasticSearch运行状态异常", e);
            PamirsSession.getMessageHub()
                    .msg(Message.init()
                            .setLevel(InformationLevelEnum.WARN)
                            .msg("ElasticSearch运行状态异常"));
            return page;
        }

        if (null == response || response.timedOut()) {
            return page;
        }

        HitsMetadata<HashMap> hits = response.hits();
        if (null == hits) {
            return page;
        }

        TotalHits totalHits = hits.total();
        long total = Optional.ofNullable(totalHits).map(TotalHits::value).orElse(0L);

        List<HashMap> dataMapList = Optional.of(hits)
                .map(HitsMetadata<HashMap>::hits)
                .map(hitsMap ->{
                    hitsMap.stream().forEach(highlightForEach -> {
                        highlightForEach.highlight().forEach((key, value) -> {
                            if(highlightForEach.source().containsKey(key)){
                                highlightForEach.source().put(key,value.get(0));
                            }
                        });

                    });
                    return hitsMap;
                })
                .map(List::stream)
                .orElse(Stream.empty())
                .map(Hit::source)
                .collect(Collectors.toList());

        List<T> context = persistenceDataConverter.out(modelModel, dataMapList);

        page.setSize(size);
        page.setTotalElements(total);
        page.setContent(context);
        log.info("ES搜索请求参数返回total,{}", total);
        return page;
    }

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/7235.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月14日 pm5:10
下一篇 2024年5月14日 pm10:15

相关推荐

  • 读写分离

    总体介绍 Oinone的读写分离方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。 [Sharding-JDBC] 读写分离依赖于主从复制来同步数据,从库复制数据后,才能通过读写分离策略将读请求分发到从库,实现读写操作的分流,请根据业务需求自行实现主从配置。 配置读写策略 配置 top_demo 模块走读写分离的逻辑数据源 pamirsSharding。 配置数据源。 为 pamirsSharding 配置数据源以及 sharding 规则。 指定需要被sharding-jdbc接管的模块 指定top_demo模块给 Sharding-JDBC 接管,接管逻辑数据源名为 pamirsSharding pamirs: framework: data: ds-map: base: base top_demo: pamirsSharding 配置数据源 pamirs: datasource: pamirsMaster: driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource url: jdbc:mysql://127.0.0.1:3306/61_pamirs_mydemo_master?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: root password: ma123456 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true pamirsSlaver: # 从库数据源配置 driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource url: jdbc:mysql://127.0.0.1:3306/61_pamirs_mydemo_slaver?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: root password: ma123456 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 配置读写数据源及规则 pamirs: sharding: define: data-sources: pamirsSharding: pamirsMaster # 为逻辑数据源pamirsSharding指向主数据源pamirsMaster。 models: "[trigger.PamirsSchedule]": tables: 0..13 rule: pamirsSharding: actual-ds: # 指定逻辑数据源pamirsSharding代理的数据源为pamirsMaster、pamirsSlaver – pamirsMaster – pamirsSlaver # 以下配置跟sharding-jdbc配置一致 replicaQueryRules: – data-sources: pamirsSharding: primaryDataSourceName: pamirsMaster # 写库数据源 replicaDataSourceNames: – pamirsSlaver # 读库数据源 loadBalancerName: round_robin load-balancers: round_robin: type: ROUND_ROBIN # 读写规则

    2025年5月22日
    35900
  • 【MSSQL】后端部署使用MSSQL数据库(SQLServer)

    MSSQL数据库配置 驱动配置 Maven配置(2017版本可用) <mssql.version>9.4.0.jre8</mssql.version> <dependency> <groupId>com.microsoft.sqlserver</groupId> <artifactId>mssql-jdbc</artifactId> <version>${mssql.version}</version> </dependency> 离线驱动下载 mssql-jdbc-7.4.1.jre8.jarmssql-jdbc-9.4.0.jre8.jarmssql-jdbc-12.2.0.jre8.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: com.microsoft.sqlserver.jdbc.SQLServerDriver url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=base username: xxxxxx password: xxxxxx initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 暂无官方资料 url格式 jdbc:sqlserver://${host}:${port};DatabaseName=${database} 在jdbc连接配置时,${database}必须配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: MSSQL version: 2017 major-version: 2017 pamirs: type: MSSQL version: 2017 major-version: 2017 数据库版本 type version majorVersion 2017 MSSQL 2017 2017 PS:由于方言开发环境为2017版本,其他类似版本原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: MSSQL version: 2017 major-version: 2017 type version majorVersion MSSQL 2017 2017 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: CAST(DATEDIFF(S, CAST('1970-01-01 00:00:00' AS DATETIME), GETUTCDATE()) AS BIGINT) * 1000000 + DATEPART(NS, SYSUTCDATETIME()) / 100 MSSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE LOGIN [root] WITH PASSWORD = 'password'; — if using mssql database, this authorization is required. ALTER SERVER ROLE [sysadmin] ADD MEMBER [root];

    2024年10月18日
    92600
  • Oinone登录扩展:对接SSO(适应于4.7.8及之后的版本)

    适配版本 4.7.8及其之后的版本 概述 在企业内部,对于已有一套完整的登录系统(SSO)的情况下,通常会要求把所有的系统都对接到SSO中;本文主要讲解用Oinone开发的项目对接SSO的具体实现。 对接步骤 1、项目自定义实现UserCookieLogin,可参考示例说明:pro.shushi.pamirs.user.api.login.UserCookieLoginFree 2、对接SSO示例 package pro.shushi.pamirs.demo.core.sso; import com.alibaba.fastjson.JSON; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.core.annotation.Order; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.web.context.request.ServletRequestAttributes; import pro.shushi.pamirs.demo.core.sso.constant.HttpConstant; import pro.shushi.pamirs.demo.core.sso.constant.SessionUserTypeEnum; import pro.shushi.pamirs.demo.core.sso.model.ApiCommonTransient; import pro.shushi.pamirs.demo.core.sso.model.PermissionInfoResp; import pro.shushi.pamirs.demo.core.sso.utils.AuthenticateUtils; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.dto.model.PamirsUserDTO; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.exception.PamirsException; import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils; import pro.shushi.pamirs.resource.api.enmu.UserSignUpType; import pro.shushi.pamirs.user.api.cache.UserCache; import pro.shushi.pamirs.user.api.constants.UserConstant; import pro.shushi.pamirs.user.api.enmu.UserExpEnumerate; import pro.shushi.pamirs.user.api.enmu.UserLoginTypeEnum; import pro.shushi.pamirs.user.api.login.IUserLoginChecker; import pro.shushi.pamirs.user.api.login.UserCookieLogin; import pro.shushi.pamirs.user.api.login.UserCookieLoginSimple; import pro.shushi.pamirs.user.api.model.PamirsUser; import pro.shushi.pamirs.user.api.model.tmodel.PamirsUserTransient; import pro.shushi.pamirs.user.api.service.UserService; import pro.shushi.pamirs.user.api.utils.CookieUtil; import javax.servlet.http.HttpServletResponse; /** * * @author shushi * * 完全自定义login的过程 * 需要实现登陆部分login 以及拦截部分fetchUserIdByReq * 如果fetchUserIdByReq返回值为null的时候 将会被拦截 */ @Slf4j @Order(0) @Component public class DemoUserSSOCookieLogin extends UserCookieLogin<PamirsUser> { //刷新令牌 private static String REFRESH_TOKEN = "refreshToken"; //系统id private static String CLIENT_ID = "client-id"; //访问令牌 private static String AUTHORIZATION = "Authorization"; private IUserLoginChecker checker; @Autowired private UserService userService; @Autowired private RedisTemplate<String, String> redisTemplate; @Override public String type() { return UserLoginTypeEnum.COOKIE.value(); } @Override public PamirsUser resolveAndVerification(PamirsUserTransient user) { if (checker == null) { checker = BeanDefinitionUtils.getBean(IUserLoginChecker.class); } return checker.check4login(user); } /** * 重写登录拦截功能 * 该函数主要作用,通过三方权限校验. * @return */ // 版本升级需要修改 @Override public PamirsUserDTO fetchUserIdByReq() { String sessionId = PamirsSession.getSessionId(); PamirsUserDTO pamirsUserDTO = UserCache.get(sessionId); if (pamirsUserDTO ==null) { //H5-企业微信登录,其他SSO登录。获取标识…

    2024年4月2日
    1.8K00
  • 【PostgreSQL】后端部署使用PostgreSQL数据库

    PostgreSQL数据库配置 驱动配置 Maven配置(14.3版本可用) <postgresql.version>42.6.0</postgresql.version> <dependency> <groupId>org.postgresql</groupId> <artifactId>postgresql</artifactId> <version>${postgresql.version}</version> </dependency> 离线驱动下载 postgresql-42.2.18.jarpostgresql-42.6.0.jarpostgresql-42.7.3.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=base username: xxxxxx password: xxxxxx 连接url配置 暂无官方资料 url格式 jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema} 在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: PostgreSQL version: 14 major-version: 14.3 pamirs: type: PostgreSQL version: 14 major-version: 14.3 数据库版本 type version majorVersion 14.x PostgreSQL 14 14.3 PS:由于方言开发环境为14.3版本,其他类似版本(14.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint PostgreSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is very important. ALTER USER root CREATEDB; SELECT * FROM pg_roles; — if using postgres database, this authorization is required. GRANT CREATE ON DATABASE postgres TO root;

    2023年11月1日
    88300
  • 工作流用户待办过滤站内信

    工作流用户待办过滤站内信 全局过滤 启动工程application.yml中配置: pamirs: workflow: notify: false 个性化过滤 实现pro.shushi.pamirs.workflow.app.api.service.WorkflowMailFilterApi接口 返回true表示需要发送站内信 返回false表示不需要发送站内信 示例: import org.apache.commons.lang3.StringUtils; import pro.shushi.pamirs.message.model.PamirsMessage; import pro.shushi.pamirs.meta.annotation.Fun; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.user.api.model.PamirsUser; import pro.shushi.pamirs.workflow.app.api.model.WorkflowUserTask; import pro.shushi.pamirs.workflow.app.api.service.WorkflowMailFilterApi; /** * MyWorkflowMailFilterImpl * * @author yakir on 2025/02/24 16:28. */ @Fun(WorkflowMailFilterApi.FUN_NAMESPACE) public class MyWorkflowMailFilterImpl implements WorkflowMailFilterApi { @Override @Function public Boolean filter(WorkflowUserTask workflowUserTask, PamirsUser user, PamirsMessage message) { // 按用户待办过滤 workflowUserTask if (10000L == workflowUserTask.getInitiatorUid()){ return true; } // 按用户过滤 user if (1000L == user.getId()){ return true; } // 按站内信消息过滤 message if (StringUtils.contains(message.getBody(), "你好")) { return true; } return false; } }

    2025年2月24日
    88600

Leave a Reply

登录后才能评论