如何自定义SQL(Mapper)语句

场景描述

在实际业务场景中,存在复杂SQL的情况,具体表现为:

  • 单表单SQL满足不了的情况下
  • 有复杂的Join关系或者子查询
  • 复杂SQL的逻辑通过程序逻辑难以实现或实现代价较大

在此情况下,通过原生的mybatis/mybatis-plus, 自定义Mapper的方式实现业务功能

1、编写所需的Mapper

SQL Mapper写法无限制,与使用原生的mybaits/mybaits-plus用法一样; Mapper(DAO)和SQL可以写在一个文件中,也分开写在两个文件中。

package pro.shushi.pamirs.demo.core.map;

import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;

import java.util.List;
import java.util.Map;

@Mapper
public interface DemoItemMapper {
    @Select("<script>select sum(item_price) as itemPrice,sum(inventory_quantity) as inventoryQuantity,categoryId from ${demoItemTable}  as core_demo_item ${where}  group by category_id</script>")
    List<Map<String, Object>> groupByCategoryId(@Param("demoItemTable") String pamirsUserTable, @Param("where") String where);
}

2.调用mapper

调用Mapper代码示例

package pro.shushi.pamirs.demo.core.map;

import com.google.api.client.util.Lists;
import org.springframework.stereotype.Component;
import pro.shushi.pamirs.demo.api.model.DemoItem;
import pro.shushi.pamirs.framework.connectors.data.api.datasource.DsHintApi;
import pro.shushi.pamirs.meta.api.core.orm.convert.DataConverter;
import pro.shushi.pamirs.meta.api.session.PamirsSession;
import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils;

import java.util.List;
import java.util.Map;

@Component
public class DemoItemDAO {
    public List<DemoItem> customSqlDemoItem(){
        try (DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL)) {
            String demoItemTable = PamirsSession.getContext().getModelCache().get(DemoItem.MODEL_MODEL).getTable();

            DemoItemMapper demoItemMapper = BeanDefinitionUtils.getBean(DemoItemMapper.class);
            String where = " where status = 'ACTIVE'";
            List<Map<String, Object>> dataList = demoItemMapper.groupByCategoryId(demoItemTable,where);
            DataConverter persistenceDataConverter = BeanDefinitionUtils.getBean(DataConverter.class);
            return persistenceDataConverter.out(DemoItem.MODEL_MODEL, dataList);
        }
        return Lists.newArrayList();
    }
}

调用Mapper一些说明

  • 启动类需要配置扫描包MapperScan
    @MapperScan(value = "pro.shushi", annotationClass = Mapper.class)
    @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, FreeMarkerAutoConfiguration.class})
    public class DemoApplication {
  • 调用Mapper接口的时候,需要指定数据源;即上述示例代码中的 DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL), 实际代码中使用 try-with-resources语法。
  • 从Mapper返回的结果中获取数据
    • 如果SQL Mapper中已定义了resultMap,调用Mapper(DAO)返回的就是Java对象
    • 如果Mapper返回的是Map<String, Object>,则通过 DataConverter.out进行转化,参考上面的示例

其他参考:Oinone连接外部数据源方案:https://doc.oinone.top/backend/4562.html

Oinone社区 作者:数式-海波原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4759.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
数式-海波的头像数式-海波数式管理员
上一篇 2023年11月24日 pm4:51
下一篇 2023年11月27日 pm4:30

相关推荐

  • 如何扩展自有的文件存储系统

    介绍 数式Oinone默认提供了阿里云、腾讯云、华为云、又拍云、Minio和本地文件存储这几种文件存储系统,如果我们有其他的文件存储系统需要对接,或者是扩展现有的文件系统,可以通过SPI继承AbstractFileClient注册新的文件存储系统。 代码示例 这里以扩展自有的本地文件系统为例 继承了内置的本地文件存储LocalFileClient,将其中上传文件的方法重写 package pro.shushi.pamirs.demo.core.file; import org.springframework.stereotype.Component; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestMethod; import org.springframework.web.bind.annotation.ResponseBody; import org.springframework.web.bind.annotation.RestController; import org.springframework.web.multipart.MultipartFile; import org.springframework.web.multipart.support.StandardMultipartHttpServletRequest; import pro.shushi.pamirs.framework.connectors.cdn.client.LocalFileClient; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.common.spi.SPI; import javax.servlet.http.HttpServletRequest; @Slf4j @Component // 注册新的文件存储系统类型 @SPI.Service(DemoLocalFileClient.TYPE) @RestController @RequestMapping("/demo_file") public class DemoLocalFileClient extends LocalFileClient { public static final String TYPE = "DEMO_LOCAL"; @Override public CdnFileForm getFormData(String fileName) { CdnConfig cdnConfig = getCdnConfig(); CdnFileForm fileForm = new CdnFileForm(); String uniqueFileName = Spider.getDefaultExtension(CdnFileNameApi.class).getNewFilename(fileName); String fileKey = getFileKey(cdnConfig.getMainDir(), uniqueFileName); //前端获取uploadUrl,上传文件到该地址 fileForm.setUploadUrl(cdnConfig.getUploadUrl() + "/demo_file/upload"); //上传后,前端将downloadUrl返回给后端 fileForm.setDownloadUrl(getDownloadUrl(fileKey)); fileForm.setFileName(uniqueFileName); Map<String, Object> formDataJson = new HashMap<>(); formDataJson.put("uniqueFileName", uniqueFileName); formDataJson.put("key", fileKey); fileForm.setFormDataJson(JSON.toJSONString(formDataJson)); return fileForm; } @ResponseBody @RequestMapping(value = "/upload", produces = "multipart/form-data;charset=UTF-8",method = RequestMethod.POST) public String uploadFileToLocal(HttpServletRequest request) { MultipartFile file = ((StandardMultipartHttpServletRequest) request).getFile("file"); // 例如可以根据file文件类型判断哪些文件是否可以上传 return super.uploadFileToLocal(request); } } 在application.yml内配置 cdn: oss: name: 本地文件系统 # 这里的type与代码中定义的文件存储系统类型对应 type: DEMO_LOCAL bucket: pamirs uploadUrl: http://127.0.0.1:8190 downloadUrl: http://127.0.0.1:6800 validTime: 3600000 timeout: 600000 active: true referer: localFolderUrl: /Users/demo/workspace/static

    2024年10月24日
    74700
  • Oinone请求调用链路

    Oinone请求调用链路 请求格式与简单流程 在Oinone中请求数据存储在请求体中,以GQL的方式进行表示,也就是GQL格式的请求。 当我们发送一个GQL格式的请求,后端会对GQL进行解析,确定想要执行的方法,并对这个方法执行过程中所用到的模型进行构建,最后返回响应。 请求 # 请求路径 pamirs/base http://127.0.0.1:8090/pamirs/base # 请求体内容 query{ petShopProxyBQuery{ sayHello(shop:{shopName:"cpc"}){ shopName } } } 解析 # 简单理解 query 操作类型 petShopProxyBQuery 模块名称 + Query sayHello 方法 fun sayHello() 可以传入参数,参数名为 shop shopName 需要得到的值 响应 # data中的内容 "data": { "petShopQuery": { "hello": { "shopName": "cpc" } } } 具体流程 Oinone是基于SpringBoot的,在Controller中处理请求 会接收所有以 /pamirs 开始的POST请求,/pamirs/后携带的是模块名 @RequestMapping( value = "/pamirs/{moduleName:^[a-zA-Z][a-zA-Z0-9_]+[a-zA-Z0-9]$}", method = RequestMethod.POST ) public String pamirsPost(@PathVariable("moduleName") String moduleName, @RequestBody PamirsClientRequestParam gql, HttpServletRequest request, HttpServletResponse response) { …….. } 整体脉络 第四步执行中有两大重要的步骤,一步是动态构建GQL,一步是执行请求。 动态构建GQL 请求执行

    2024年12月1日
    1.0K00
  • 如何自定义Excel导出功能

    介绍 在平台提供的默认导出功能无法满足业务需求的时候,我们可以自定义导出功能,以满足业务中个性化的需求。 功能示例 继承平台的导出任务模型,加上需要在导出的弹窗视图需要展示的字段 package pro.shushi.pamirs.demo.api.model; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.meta.annotation.Field; import pro.shushi.pamirs.meta.annotation.Model; @Model.model(DemoItemExportTask.MODEL_MODEL) @Model(displayName = "商品-Excel导出任务") public class DemoItemExportTask extends ExcelExportTask { public static final String MODEL_MODEL = "demo.DemoItemExportTask"; // 自定义显示的字段 @Field.String @Field(displayName = "发布人") private String publishUserName; } 编写自定义导出弹窗视图的数据初始化方法和导出提交的action package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.file.api.action.ExcelExportTaskAction; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.service.ExcelFileService; import pro.shushi.pamirs.meta.annotation.Action; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.enmu.ActionContextTypeEnum; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import pro.shushi.pamirs.meta.enmu.ViewTypeEnum; @Slf4j @Component @Model.model(DemoItemExportTask.MODEL_MODEL) public class DemoItemExcelExportTaskAction extends ExcelExportTaskAction { public DemoItemExcelExportTaskAction(ExcelFileService excelFileService) { super(excelFileService); } @Action(displayName = "导出", contextType = ActionContextTypeEnum.CONTEXT_FREE, bindingType = {ViewTypeEnum.TABLE}) public DemoItemExportTask createExportTask(DemoItemExportTask data) { if (data.getWorkbookDefinitionId() != null) { ExcelWorkbookDefinition workbookDefinition = new ExcelWorkbookDefinition(); workbookDefinition.setId(data.getWorkbookDefinitionId()); data.setWorkbookDefinition(workbookDefinition); } super.createExportTask(data); return data; } /** * @param data * @return */ @Function(openLevel = FunctionOpenEnum.API) @Function.Advanced(type = FunctionTypeEnum.QUERY) public DemoItemExportTask construct(DemoItemExportTask data) { data.construct(); return data; } } 编写导出的数据处理逻辑,此处可以拿到导出弹窗内自定义的字段提交的值,然后根据这些值处理自定义逻辑 package pro.shushi.pamirs.demo.core.excel.extPoint; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.demo.api.model.DemoItemExportTask; import pro.shushi.pamirs.demo.api.model.DemoItemImportTask; import pro.shushi.pamirs.file.api.context.ExcelDefinitionContext; import pro.shushi.pamirs.file.api.enmu.ExcelTemplateTypeEnum; import pro.shushi.pamirs.file.api.extpoint.ExcelExportFetchDataExtPoint; import pro.shushi.pamirs.file.api.extpoint.impl.ExcelExportSameQueryPageTemplate; import pro.shushi.pamirs.file.api.model.ExcelExportTask; import pro.shushi.pamirs.file.api.model.ExcelWorkbookDefinition; import pro.shushi.pamirs.file.api.util.ExcelHelper; import pro.shushi.pamirs.file.api.util.ExcelTemplateInit; import pro.shushi.pamirs.meta.annotation.ExtPoint; import java.util.Collections; import java.util.List; @Component public class DemoItemExportExtPoint extends ExcelExportSameQueryPageTemplate implements ExcelTemplateInit , ExcelExportFetchDataExtPoint…

    2024年1月3日
    1.2K00
  • 模型字段之序列化方式

    本文核心是带大家全面了解oinone的序列方式,包括支持的序列化类型、注意点、如果新增客户化序列化方式以及字段默认值的反序列化。 字段序列化方式说明 序列化方式 说明 备注 JSON JSON序列化 主要用于模型相关类型字段的序列化,是@Field.serialize默认选项 DOT 点拼接集合元素 COMMA 逗号拼接集合元素 BIT 按位与,2次幂数求和 非@Field.serialize可选项列表,用于二进制枚举序列化不需要配置,由oinone自动推断 字段序列化方式举例 1、给模型PetItemDetail 增加两个字段:petItemDetails类型为List 和 tags类型为List,并设置为不同的序列化方式,petItemDetails为JSON(缺省就是JSON,可不配),tags为COMMA。2、同时设置 @Field.Advanced(columnDefinition = "varchar(1024)"),防止序列化后存储过长。 @Model.model(PetItem.MODEL_MODEL) @Model(displayName = "宠物商品",summary="宠物商品",labelFields = {"itemName"}) public class PetItem extends AbstractDemoCodeModel{ public static final String MODEL_MODEL="demo.PetItem"; @Field(displayName = "品种") @Field.many2one @Field.Relation(relationFields = {"typeId"},referenceFields = {"id"}) private PetType type; @Field(displayName = "品种类型",invisible = true) private Long typeId; @Field(displayName = "详情", serialize = Field.serialize.JSON, store = NullableBoolEnum.TRUE) @Field.Advanced(columnDefinition = "varchar(1024)") private List<PetItemDetail> petItemDetails; @Field(displayName = "商品标签",serialize = Field.serialize.COMMA,store = NullableBoolEnum.TRUE,multi = true) @Field.Advanced(columnDefinition = "varchar(1024)") private List<String> tags; } 字段序列化注意点 必须使用Field#store属性将字段存储设置为NullableBoolEnum.TRUE。 使用Field#serialize属性指定序列化方式,默认为JSON。 如把PetItemDetail设置为存储模型,须在PetItem的petItemDetails字段上使用Field.Relation#store属性将关联关系存储设置为false。不然会同时存储petItemDetails字段和对应的PetItemDetail表记录 注册自己的序列化器 注册自己的序列化器(实现pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer接口), 如oinone的DOT的序列化方式,用type()方法返回值做匹配,serialize和deserialize分别对应序列化和反序列化方法。 package pro.shushi.pamirs.framework.compute.serialize; import org.apache.commons.lang3.StringUtils; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import pro.shushi.pamirs.meta.api.core.orm.serialize.Serializer; import pro.shushi.pamirs.meta.common.constants.CharacterConstants; import pro.shushi.pamirs.meta.enmu.SerializeEnum; import pro.shushi.pamirs.meta.util.TypeUtils; import java.util.ArrayList; import java.util.Collections; import java.util.List; /** * 点表达式序列生成处理器实现 * @author shushi@shushi.pro * @version 1.0.0 */ @SuppressWarnings("rawtypes") @Slf4j @Component public class DotSerializeProcessor implements Serializer<Object, String> { @Override public String serialize(String ltype, Object value) { if (null == value) { return null; } if (List.class.isAssignableFrom(value.getClass())) { return StringUtils.join((List) value, CharacterConstants.SEPARATOR_DOT); } else { return StringUtils.join(Collections.singletonList(value), CharacterConstants.SEPARATOR_DOT); } } @SuppressWarnings("unchecked") @Override public Object deserialize(String ltype, String ltypeT, String value,…

    2024年5月24日
    1.6K00
  • 【OpenGauss】后端部署使用OpenGauss高斯数据库

    Gauss数据库配置 适配版本 4.7.8.3之后的版本 配置步骤 Maven配置 去华为官网下周驱动包:gsjdbc4.jar;https://support.huaweicloud.com/mgtg-dws/dws_01_0032.html <dependency> <groupId>org.postgresql</groupId> <artifactId>gsjdbc</artifactId> <version>4</version> <scope>system</scope> <!– 下面两种方式都可以–> <systemPath>${pom.basedir}/libs/gsjdbc4.jar</systemPath> <!–<systemPath>/Users/wangxian/java-tools/guassdb/gsjdbc4.jar</systemPath>–> </dependency> 导入 scope 为 system 的包,spring 编译插件需要增加 includeSystemScope: true 配置。 <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <includeSystemScope>true</includeSystemScope> </configuration> <executions> <execution> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> JDBC连接配置 pamirs: datasource: pamirs: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=demo_base username: XXXXXX password: XXXXXX initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000 testWhileIdle: true testOnBorrow: false testOnReturn: false poolPreparedStatements: true asyncInit: true 连接url配置 点击查看官方文档:官方文档 url格式 jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema} 在pamirs连接配置时,${database}和${schema}必须完整配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: GaussDB version: 5 majorVersion: 5.0.1 pamirs: type: GaussDB version: 5 majorVersion: 5.0.1 数据库版本 type version majorVersion 5.x GaussDB 5 5.0.1 PS:由于方言开发环境为5.0.1版本,其他类似版本(5.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: GaussDB version: 5 major-version: 5.0.1 type version majorVersion GaussDB 5 5.0.1 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint Gauss数据库用户初始化及授权 — init root…

    2024年3月27日
    2.2K00

Leave a Reply

登录后才能评论