Oinone连接外部数据源方案

场景描述

在实际业务场景中,有是有这样的需求:链接外部数据进行数据的获取;通常的做法:
1、【推荐】通过集成平台的数据连接器,链接外部数据源进行数据操作;
2、项目代码中链接数据源,即通过程序代码操作外部数据源的数据;

本篇文章只介绍通过程序代码操作外部数据源的方式.

整体方案

  • Oinone管理外部数据源,即yml中配置外部数据源;
  • 后端通过Mapper的方式进行数据操作(增/删/查/改);
  • 调用Mapper接口的时候,指定到外部数据源;

详细步骤

1、数据源配置(application.yml), 与正常的数据源配置一样

    out_ds_name(外部数据源别名):
      driverClassName: com.mysql.cj.jdbc.Driver
      type: com.alibaba.druid.pool.DruidDataSource
      # local环境配置调整
      url: jdbc:mysql://ip(host):端口/数据库Schema?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true
      username: 用户名
      password: 命名
      initialSize: 5
      maxActive: 200
      minIdle: 5
      maxWait: 60000
      timeBetweenEvictionRunsMillis: 60000
      testWhileIdle: true
      testOnBorrow: false
      testOnReturn: false
      poolPreparedStatements: true
      asyncInit: true

2、外部数据源其他配置
外部数据源限制创建表结构的执行,可以通过配置指定【不创建DB,不创建数据表】

      persistence:
        global:
          auto-create-database: true
          auto-create-table: true
        ds:
          out_ds_name(外部数据源别名):
            # 不创建DB
            auto-create-database: false
            # 不创建数据表
            auto-create-table: false

3、后端写Mapper

  • SQL Mapper跟使用原生mybaits/mybaits-plus写法一样,无特殊限制;
  • Mapper和SQL写到一起,或者分开两个文件都可以

4、Mapper被Service或者Action调用
1)启动的Application中@MapperScan需要扫描到对应的包。
2)调用是与普通bean一样(即调用方式跟传统的方式样),唯一的区别就是加上DsHintApi,即指定Mapper所使用的数据源。

@Autowired
private ScheduleItemMapper scheduleItemMapper;

public saveData(Object data) {
    ScheduleQuery scheduleQuery = new ScheduleQuery();
    //scheduleQuery.setActionName();
    try (DsHintApi dsHint = DsHintApi.use(“外部数据源名称”)) {
        List<ScheduleItem> scheduleItems = scheduleItemMapper.selectListForSerial(scheduleQuery);
        // 具体业务逻辑
    }
}

其他参考:
如何自定义sql语句:https://doc.oinone.top/backend/4759.html

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/4562.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(2)
望闲的头像望闲数式管理员
上一篇 2024年5月17日 pm2:23
下一篇 2024年5月17日 pm6:40

相关推荐

  • 导入设计数据时dubbo超时导入失败

    问题描述 在本地启动导入设计数据的工程时,会出现dubbo调用超时导致设计数据无法完整导入的问题。 org.apache.dubbo.remoting.TimeoutException 产生原因 pom中的包依赖出现问题,导致没有使用正确的远程服务。 本地可能出现的异常报错堆栈信息如下: xception in thread "fixed-1-thread-10" PamirsException level: ERROR, code: 10100025, type: SYSTEM_ERROR, msg: 函数执行错误, extra:, extend: null at pro.shushi.pamirs.meta.common.exception.PamirsException$Builder.errThrow(PamirsException.java:190) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:118) at sun.reflect.GeneratedMethodAccessor498.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethodWithGivenArgs(AbstractAspectJAdvice.java:644) at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethod(AbstractAspectJAdvice.java:633) at org.springframework.aop.aspectj.AspectJAroundAdvice.invoke(AspectJAroundAdvice.java:70) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:175) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:95) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) at org.springframework.aop.framework.CglibAopProxy$DynamicAdvisedInterceptor.intercept(CglibAopProxy.java:691) at pro.shushi.pamirs.framework.orm.DefaultWriteApi$$EnhancerBySpringCGLIB$$b4cea2b4.createOrUpdateBatchWithResult(<generated>) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatchWithResult(OriginDataManager.java:161) at pro.shushi.pamirs.meta.base.manager.data.OriginDataManager.createOrUpdateBatch(OriginDataManager.java:152) at pro.shushi.pamirs.ui.designer.service.installer.UiDesignerInstaller.lambda$install$0(UiDesignerInstaller.java:42) at pro.shushi.pamirs.core.common.function.AroundRunnable.run(AroundRunnable.java:26) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.dubbo.rpc.RpcException: Failed to invoke the method createOrUpdateBatchWithResult in the service org.apache.dubbo.rpc.service.GenericService. Tried 1 times of the providers [192.168.0.123:20880] (1/1) from the registry 127.0.0.1:2181 on the consumer 192.168.0.123 using the dubbo version 2.7.22. Last error is: Invoke remote method timeout. method: $invoke, provider: dubbo://192.168.0.123:20880/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi?anyhost=true&application=pamirs-demo&application.version=1.0.0&check=false&deprecated=false&dubbo=2.0.2&dynamic=true&generic=true&group=pamirs&interface=ui.designer.UiDesignerViewLayout.oio.defaultWriteApi&metadata-type=remote&methods=*&payload=104857600&pid=69748&qos.enable=false&register.ip=192.168.0.123&release=2.7.15&remote.application=pamirs-test&retries=0&serialization=pamirs&service.name=ServiceBean:pamirs/ui.designer.UiDesignerViewLayout.oio.defaultWriteApi:1.0.0&side=consumer&sticky=false&timeout=5000&timestamp=1701136088893&version=1.0.0, cause: org.apache.dubbo.remoting.TimeoutException: Waiting server-side response timeout by scan timer. start time: 2023-11-28 10:23:05.835, end time: 2023-11-28 10:23:10.856, client elapsed: 695 ms, server elapsed: 4326 ms, timeout: 5000 ms, request: Request [id=0, version=2.0.2, twoway=true, event=false, broken=false, data=null], channel: /192.168.0.123:49449 -> /192.168.0.123:20880 at org.apache.dubbo.rpc.cluster.support.FailoverClusterInvoker.doInvoke(FailoverClusterInvoker.java:110) at org.apache.dubbo.rpc.cluster.support.AbstractClusterInvoker.invoke(AbstractClusterInvoker.java:265) at org.apache.dubbo.rpc.cluster.interceptor.ClusterInterceptor.intercept(ClusterInterceptor.java:47) at org.apache.dubbo.rpc.cluster.support.wrapper.AbstractCluster$InterceptorInvokerNode.invoke(AbstractCluster.java:92) at org.apache.dubbo.rpc.cluster.support.wrapper.MockClusterInvoker.invoke(MockClusterInvoker.java:98) at org.apache.dubbo.registry.client.migration.MigrationInvoker.invoke(MigrationInvoker.java:170) at org.apache.dubbo.rpc.proxy.InvokerInvocationHandler.invoke(InvokerInvocationHandler.java:96) at org.apache.dubbo.common.bytecode.proxy0.$invoke(proxy0.java) at pro.shushi.pamirs.framework.faas.distribution.computer.RemoteComputer.compute(RemoteComputer.java:124) at pro.shushi.pamirs.framework.faas.FunEngine.run(FunEngine.java:80) at pro.shushi.pamirs.distribution.faas.remote.spi.service.RemoteFunctionHelper.run(RemoteFunctionHelper.java:68) at pro.shushi.pamirs.framework.faas.fun.manage.ManagementAspect.around(ManagementAspect.java:109) … 20 more Caused…

    2023年11月28日
    1.1K00
  • 使用Mapper方式进行联表查询

    有些业务场景需要查询两张表的数据,这时候就需要用到联表查询。下面将介绍两种方式进行联表查询。 场景:A模型页面,查询条件中包含B模型字段 模型A @Model.model(YesOne.MODEL_MODEL) @Model(displayName = "YesOne", summary = "YesOne") public class YesOne extends IdModel { public static final String MODEL_MODEL = "top.YesOne"; @Field.Integer @Field(displayName = "YesId") private Long yesId; @Field.String @Field(displayName = "名字") private String name; @Field.String @Field(displayName = "科目名字") private String professionalName; @Field(displayName = "关联YesTwo") @Field.many2one @Field.Relation(relationFields = {"yesId"},referenceFields = {"id"}) private YesTwo yesTwo; } 模型B @Model.model(YesTwo.MODEL_MODEL) @Model(displayName = "YesTwo", summary = "YesTwo") public class YesTwo extends IdModel { public static final String MODEL_MODEL = "top.YesTwo"; @Field.Integer @Field(displayName = "科目id") private Long professionalId; @Field.String @Field(displayName = "科目名字") private String professionalName; } 1. 使用in的方式查询 通过B模型的查询条件查询出符合条件的所有数据ID,再根据这个ID去A模型里面查询出所需的数据。 @Function.Advanced(displayName = "查询列表", type = FunctionTypeEnum.QUERY, category = FunctionCategoryEnum.QUERY_PAGE, managed = true) @Function(openLevel = {FunctionOpenEnum.LOCAL, FunctionOpenEnum.REMOTE, FunctionOpenEnum.API}) public Pagination<YesOne> queryPage(Pagination<YesOne> page, IWrapper<YesOne> queryWrapper) { String professionalName = (String) queryWrapper.getQueryData().get("professionalName"); if (StringUtils.isNotBlank(professionalName)) { List<Long> yesTwoId = new YesTwo().queryList(Pops.<YesTwo>lambdaQuery() .from(YesTwo.MODEL_MODEL) .eq(YesTwo::getProfessionalName, professionalName)) .stream().map(YesTwo::getId) .collect(Collectors.toList()); LambdaQueryWrapper<YesOne> wq = Pops.<YesOne>lambdaQuery().from(YesOne.MODEL_MODEL); if (CollectionUtils.isNotEmpty(yesTwoId)) { wq.in(YesOne::getYesId, yesTwoId); } return new YesOne().queryPage(page, wq); } return new YesOne().queryPage(page, queryWrapper); } 2. 使用mapper的方式查询 利用sql的方式去直接查询出结果。使用联表查询的方式查询 @Autowired private YesOneQueryMapper yesOneQueryMapper; @Function.Advanced(displayName = "查询列表", type = FunctionTypeEnum.QUERY, category = FunctionCategoryEnum.QUERY_PAGE, managed = true) @Function(openLevel = {FunctionOpenEnum.LOCAL,…

    2024年9月27日
    1.1K00
  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.3K00
  • 项目中排除掉特定的Hook和扩展点

    总体介绍 在共库共Redis的情况下,某些场景存在需要过滤掉特定Hook和扩展点(extpoint)的情况。本文介绍排除掉的配置方法 1. Oinone如何排除特定的Hook 配置: pamirs: framework: hook: excludes: – 排除的扩展点列表 示例: pamirs: framework: hook: excludes: – pro.shushi.pamirs.timezone.hook.TimezoneHookBefore – pro.shushi.pamirs.timezone.hook.TimezoneHookAfter – pro.shushi.pamirs.timezone.hook.TimezoneSessionInitHook – pro.shushi.pamirs.translate.hook.TranslateAfterHook 2. Oinone如何排除特定的扩展点 配置 pamirs: framework: extpoint: excludes: – 排除的扩展点列表 示例: pamirs: framework: extpoint: excludes: – pro.shushi.pamirs.demo.core.extpoint.PetCatTypeExtPoint

    2024年5月13日
    1.2K00
  • Oinone协同开发源码分析

    前提 源码分析版本是 5.1.x版本 什么是协同开发模式 协同开发模式解决的是不同开发,在开发同一个模型时,不会相互影响,也不会影响到测试环境详见:Oinone协同开发使用手册 协同开发原理 在协同模式下,本地开发的元数据,配置pamirs.data.distribution.session.ownSign参数后,元数据前缀加ownSign值,然后只存在redis缓存,不落库。其它环境无法直接访问到该数据。测试环境,或其它环境访问,需要在url上加ownSign等于设置的,则读redis数据时,除了加载通用数据,也会合并ownSign前缀的redis数据,显示出来 注意事项 协同开发仅支持界面设计器,其他设计器均不支持 不支持权限配置 不支持工作流触发 版本支持 完整支持5.1.0及以上 功能详解 启动时操作 做元数据保护检查 配置ownSign,则key拼接为 ownSign + ‘:’ + key 清除掉ownSign的redis缓存数据;非ownSign不用清理 计算差量数据 有差量数据,放入ownSign标识数据,并清理本地标识 dubbo注册服务,group拼接group + ownSign 后进行注册 读取时操作 读本地 组装key: ownSign + ‘:’ + key 本地缓存有数据,更新缓存本地数据,返回 本地没有数据,读redis,并插入本地缓存 读远程 dubbo注册消费者,group拼接group + ownSign 后进行泛化调用 元数据保护检查 开启数据保护模式,在启动参数里加-PmetaProtected=pamirs 会在启动时,往redis里写入数据 private static final String META_PROTECTED_KEY = “pamirs:check:meta-protected”; private void writeMetaProtected(String metaProtected) { stringRedisTemplate.opsForValue().set(META_PROTECTED_KEY, metaProtected); } 如果同时又设置 pamirs.data.distribution.session.ownSign则会报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 处理逻辑如下 看redis是否启用保护标识的值 获取pamirs.distribution.session.ownSign配置 没有启动参数 且redis没有值,则retrun 如果有启动参数且配置了ownSign,报错 在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign] 如果有启动参数且 redis没有值或启动参数设置 -P metaForceProtected,则写入redis 如果有启动参数, 且启动参数跟redis值不同,则报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 如果没有启动参数且redis有值,但没有配置ownSign 报错[公共环境开启了元数据保护模式,本地开发环境需配置[pamirs.distribution.session.ownSign]] 核心代码如下MetadataProtectedChecker public void process(AppLifecycleCommand command, Set<String> runModules, List<ModuleDefinition> installModules, List<ModuleDefinition> upgradeModules, List<ModuleDefinition> reloadModules) { String currentMetaProtected = stringRedisTemplate.opsForValue().get(META_PROTECTED_KEY); String metaProtected = getMetaProtected(); boolean hasCurrentMetaProtected = StringUtils.isNotBlank(currentMetaProtected); boolean hasMetaProtected = StringUtils.isNotBlank(metaProtected); if (!hasCurrentMetaProtected && !hasMetaProtected) { return; } if (hasMetaProtected) { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { // 如果有启动参数且配置了ownSign throw new UnsupportedOperationException(“在使用元数据保护模式下,不允许设置 [pamirs.distribution.session.ownSign]”); } if (!hasCurrentMetaProtected || isForceProtected()) { writeMetaProtected(metaProtected); } else if (!metaProtected.equals(currentMetaProtected)) { // 如果有启动参数, 且启动参数跟redis值不同 throw unsupportedLocalOperation(); } } else { if (Spider.getDefaultExtension(SessionFillOwnSignApi.class).handleOwnSign()) { return; } // 没有启动参数且redis有值,但没有配置ownSign 报错 throw unsupportedLocalOperation(); } } 取ownSign方式 看header是否有ownSign这个标识 header没有,则从配置里取,并放到header里 ownSign的获取核心代码 CdDistributionSessionFillOwnSignApi @Override public String getCdOwnSign() { String cdOwnSign = null; // 看header是否有ownSign这个标识…

    2024年9月12日
    1.5K00

Leave a Reply

登录后才能评论