查询时自定义排序字段和排序规则

指定字段排序

平台默认排序字段,参考IdModel,按创建时间和ID倒序(ordering = "createDate DESC, id DESC")

方法1:模型指定排序

模型定义增加排序字段。@Model.Advanced(ordering = "xxxxx DESC, yyyy DESC")

@Model.model(PetShop.MODEL_MODEL)
@Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"})
@Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd")
@Model.Advanced(ordering = "createDate DESC")
public class PetShop extends AbstractDemoIdModel {
       public static final String MODEL_MODEL="demo.PetShop";
       // …………
}

方法2:Page查询中可以自定排序规则

  • API参考 pro.shushi.pamirs.meta.api.dto.condition.Pagination#orderBy
    public <G, R> Pagination<T> orderBy(SortDirectionEnum direction, Getter<G, R> getter) {
     if (null == getSort()) {
         setSort(new Sort());
     }
     getSort().addOrder(direction, getter);
     return this;
    }
  • 具体示例
    @Function.Advanced(type= FunctionTypeEnum.QUERY)
    @Function.fun(FunctionConstants.queryPage)
    @Function(openLevel = {FunctionOpenEnum.API})
    public Pagination<PetShop> queryPage(Pagination<PetShop> page, IWrapper<PetShop> queryWrapper){
     page.orderBy(SortDirectionEnum.DESC, PetShop::getCreateDate);
     page = new PetShop().queryPage(page, queryWrapper);
     return page;
    }

方法3:查询的wapper中指定

  • API参考:pro.shushi.pamirs.framework.connectors.data.sql.AbstractWrapper#orderBy
    @Override
    public Children orderBy(boolean condition, boolean isAsc, R... columns) {
    if (ArrayUtils.isEmpty(columns)) {
        return typedThis;
    }
    SqlKeyword mode = isAsc ? ASC : DESC;
    for (R column : columns) {
        doIt(condition, ORDER_BY, columnToString(column), mode);
    }
    return typedThis;
    }

具体示例

public List<PetShop> queryList(String name) {
    List<PetShop> petShops = Models.origin().queryListByWrapper(
            Pops.<PetShop>lambdaQuery().from(PetShop.MODEL_MODEL)
                    .orderBy(true, true, PetShop::getCreateDate)
                   .orderBy(true, true, PetShop::getId)
                    .like(PetShop::getShopName, name));
    return petShops;
}

设置查询不排序

方法1:关闭平台默认排序字段,设置模型的ordering,改成:ordering = "1=1"

模型定义增加排序字段。@Model.Advanced(ordering = "1=1")

@Model.model(PetShop.MODEL_MODEL)
@Model(displayName = "宠物店铺",summary="宠物店铺",labelFields ={"shopName"})
@Model.Code(sequence = "DATE_ORDERLY_SEQ",prefix = "P",size=6,step=1,initial = 10000,format = "yyyyMMdd")
@Model.Advanced(ordering = "1=1")
public class PetShop extends AbstractDemoIdModel {
       public static final String MODEL_MODEL="demo.PetShop";
       // …………
}

在ORDER BY 1=1中,1=1是一个条件表达式,它总是会返回true(或者在某些数据库中是1),因为1等于1。因此,这个条件实际上没有改变排序的结果,结果仍然会按照默认的顺序进行排序。这种写法通常用于一些动态生成SQL语句的场景中,可以在不知道具体列名的情况下按照顺序进行排序。

所以,ORDER BY 1=1实际上等效于没有使用ORDER BY子句,或者说是按照默认顺序进行排序。

方法2:查询是设置Sortable属性

// 示例1:
LambdaQueryWrapper<PetShop> query = Pops.<PetShop>lambdaQuery();
query.from(PetShop.MODEL_MODEL);
query.setSortable(Boolean.FALSE);
query.orderBy(true, true, PetShop::getId);
List<PetShop> petShops2 = new PetShop().queryList(query);
System.out.printf(petShops2.size() + "");

// 示例2:
List<PetShop> petShops3 = new PetShop().queryList(
        Pops.<PetShop>lambdaQuery().from(PetShop.MODEL_MODEL).setSortable(Boolean.FALSE));
System.out.printf(petShops3.size() + "");

// 示例3:
IWrapper<PetShop> wrapper = Pops.<PetShop>lambdaQuery()
        .from(PetShop.MODEL_MODEL).setBatchSize(-1).setSortable(Boolean.FALSE);
List<PetShop> petShops4 = new PetShop().queryList(wrapper);
System.out.printf(petShops4.size() + "");

// 示例4:
QueryWrapper<PetShop> wrapper2 = new QueryWrapper<PetShop>().from(PetShop.MODEL_MODEL).setSortable(Boolean.FALSE);
List<PetShop> petShops5 = new PetShop().queryList(wrapper2);
System.out.printf(petShops5.size() + "");

Oinone社区 作者:望闲原创文章,如若转载,请注明出处:https://doc.oinone.top/backend/11449.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
望闲的头像望闲数式管理员
上一篇 2024年5月25日 pm4:47
下一篇 2024年5月25日 pm5:59

相关推荐

  • 分库分表与自定义分表规则

    总体介绍 Oinone的分库分表方案是基于Sharding-JDBC的整合方案,要先具备一些Sharding-JDBC的知识。[Sharding-JDBC]https://shardingsphere.apache.org/document/current/cn/overview/ 做分库分表前,大家要有一个明确注意的点就是分表字段(也叫均衡字段)的选择,它是非常重要的,与业务场景非常相关。在明确了分库分表字段以后,甚至在功能上都要做一些妥协。比如分库分表字段在查询管理中做为查询条件是必须带上的,不然效率只会更低。 分表字段不允许更新,所以代码里更新策略设置类永不更新,并在设置了在页面修改的时候为readonly 配置分表策略 配置ShardingModel模型走分库分表的数据源pamirsSharding 为pamirsSharding配置数据源以及sharding规则 a. pamirs.sharding.define用于oinone的数据库表创建用 b. pamirs.sharding.rule用于分表规则配置 为pamirsSharding配置数据源以及sharding规则 1)指定模型对应数据源 pamirs: framework: system: system-ds-key: base system-models: – base.WorkerNode data: default-ds-key: pamirs ds-map: base: base modelDsMap: "[demo.ShardingModel]": pamirsSharding #配置模型对应的库 2)分库分表规则配置 pamirs: sharding: define: data-sources: ds: pamirs pamirsSharding: pamirs #申明pamirsSharding库对应的pamirs数据源 models: "[trigger.PamirsSchedule]": tables: 0..13 "[demo.ShardingModel]": tables: 0..7 table-separator: _ rule: pamirsSharding: #配置pamirsSharding库的分库分表规则 actual-ds: – pamirs #申明pamirsSharding库对应的pamirs数据源 sharding-rules: # Configure sharding rule ,以下配置跟sharding-jdbc配置一致 – tables: demo_core_sharding_model: #demo_core_sharding_model表规则配置 actualDataNodes: pamirs.demo_core_sharding_model_${0..7} tableStrategy: standard: shardingColumn: user_id shardingAlgorithmName: table_inline shardingAlgorithms: table_inline: type: INLINE props: algorithm-expression: demo_core_sharding_model_${(Long.valueOf(user_id) % 8)} props: sql.show: true 自定义规则 默认规则即通用的分库分表策略,如按照数据量、哈希等方式进行分库分表;通常默认规则是可以的。 但在一些复杂的业务场景下,使用默认规则可能无法满足需求,需要根据实际情况进行自定义。例如,某些业务可能有特定的数据分布模式或者查询特点,需要定制化的分库分表规则来优化数据访问性能或者满足业务需求。在这种情况下,使用自定义规则可以更好地适应业务的需求。 自定义分表规则示例 示例1:按月份分表(DATE_MONTH ) package pro.shushi.pamirs.demo.core.sharding; import cn.hutool.core.date.DateUtil; import com.google.common.collect.Range; import org.apache.shardingsphere.sharding.api.sharding.standard.PreciseShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.RangeShardingValue; import org.apache.shardingsphere.sharding.api.sharding.standard.StandardShardingAlgorithm; import org.springframework.stereotype.Component; import pro.shushi.pamirs.meta.annotation.fun.extern.Slf4j; import java.util.*; /** * @author wangxian * @version 1.0 * @description */ @Component @Slf4j public class DateMonthShardingAlgorithm implements StandardShardingAlgorithm<Date> { private Properties props; @Override public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Date> preciseShardingValue) { Date date = preciseShardingValue.getValue(); String suffix = "_" + (DateUtil.month(date) + 1); for (String tableName : availableTargetNames) { if (tableName.endsWith(suffix)) { return tableName; } } throw new IllegalArgumentException("未找到匹配的数据表"); } @Override public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Date> rangeShardingValue) { List<String> list =…

    2024年5月11日
    1.1K00
  • 如何自定义SQL(Mapper)语句

    场景描述 在实际业务场景中,存在复杂SQL的情况,具体表现为: 单表单SQL满足不了的情况下 有复杂的Join关系或者子查询 复杂SQL的逻辑通过程序逻辑难以实现或实现代价较大 在此情况下,通过原生的mybatis/mybatis-plus, 自定义Mapper的方式实现业务功能 1、编写所需的Mapper SQL Mapper写法无限制,与使用原生的mybaits/mybaits-plus用法一样; Mapper(DAO)和SQL可以写在一个文件中,也分开写在两个文件中。 package pro.shushi.pamirs.demo.core.map; import org.apache.ibatis.annotations.Mapper; import org.apache.ibatis.annotations.Param; import org.apache.ibatis.annotations.Select; import java.util.List; import java.util.Map; @Mapper public interface DemoItemMapper { @Select("<script>select sum(item_price) as itemPrice,sum(inventory_quantity) as inventoryQuantity,categoryId from ${demoItemTable} as core_demo_item ${where} group by category_id</script>") List<Map<String, Object>> groupByCategoryId(@Param("demoItemTable") String pamirsUserTable, @Param("where") String where); } 2.调用mapper 调用Mapper代码示例 package pro.shushi.pamirs.demo.core.map; import com.google.api.client.util.Lists; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.DemoItem; import pro.shushi.pamirs.framework.connectors.data.api.datasource.DsHintApi; import pro.shushi.pamirs.meta.api.core.orm.convert.DataConverter; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.common.spring.BeanDefinitionUtils; import java.util.List; import java.util.Map; @Component public class DemoItemDAO { public List<DemoItem> customSqlDemoItem(){ try (DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL)) { String demoItemTable = PamirsSession.getContext().getModelCache().get(DemoItem.MODEL_MODEL).getTable(); DemoItemMapper demoItemMapper = BeanDefinitionUtils.getBean(DemoItemMapper.class); String where = " where status = 'ACTIVE'"; List<Map<String, Object>> dataList = demoItemMapper.groupByCategoryId(demoItemTable,where); DataConverter persistenceDataConverter = BeanDefinitionUtils.getBean(DataConverter.class); return persistenceDataConverter.out(DemoItem.MODEL_MODEL, dataList); } return Lists.newArrayList(); } } 调用Mapper一些说明 启动类需要配置扫描包MapperScan @MapperScan(value = "pro.shushi", annotationClass = Mapper.class) @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class, FreeMarkerAutoConfiguration.class}) public class DemoApplication { 调用Mapper接口的时候,需要指定数据源;即上述示例代码中的 DsHintApi dsHint = DsHintApi.model(DemoItem.MODEL_MODEL), 实际代码中使用 try-with-resources语法。 从Mapper返回的结果中获取数据 如果SQL Mapper中已定义了resultMap,调用Mapper(DAO)返回的就是Java对象 如果Mapper返回的是Map<String, Object>,则通过 DataConverter.out进行转化,参考上面的示例 其他参考:Oinone连接外部数据源方案:https://doc.oinone.top/backend/4562.html

    2023年11月27日
    1.4K00
  • RocketMQ消费者出现类似RemotingTimeoutException: invokeSync call timeout错误处理办法

    RocketMQ消费者在macOS中出现类似RemotingTimeoutException: invokeSync call timeout错误处理办法: 命令行中执行脚本 scutil –set HostName $(scutil –get LocalHostName)  重启应用

    2024年6月12日
    1.0K00
  • 项目中工作流引入和流程触发

    目录 1. 使用工作流需要依赖的包和设置2. 触发方式2.1 自动触发方式2.2 触发方式 1.使用工作流需要依赖的包和设置 1.1 工作流需要依赖的模块 需在pom.xml中增加workflow、sql-record和trigger相关模块的依赖 workflow:工作流运行核心模块 sql-record:监听流程发布以后对应模型的增删改监听 trigger:异步任务调度模块 <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-api</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.workflow</groupId> <artifactId>pamirs-workflow-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-sql-record-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-core</artifactId> </dependency> <dependency> <groupId>pro.shushi.pamirs.core</groupId> <artifactId>pamirs-trigger-bridge-tbschedule</artifactId> </dependency> 在application.yml中增加对应模块的依赖以及sql-record路径以及其他相关设置 pamirs: … record: sql: #改成自己路径 store: /opt/pamirs/logs … boot: init: true sync: true modules: … – sql_record – trigger – workflow … sharding: define: data-sources: ds: pamirs models: "[trigger.PamirsSchedule]": tables: 0..13 event: enabled: true schedule: enabled: true # ownSign区分不同应用 ownSign: demo rocket-mq: # enabled 为 false情况不用配置 namesrv-addr: 192.168.6.2:19876 trigger: auto-trigger: true 2.触发方式 2.1自动触发方式 在流程设计器中设置触发方式,如果设置了代码触发方式则不会自动触发 2.2代码调用方式触发 2.2.1.再流程设计器中触发设置中,设置为是否人工触发设置为是 2.2.2.查询数据库获取该流程的编码 2.2.3.在代码中调用 /** * 触发⼯作流实例 */ private Boolean startWorkflow(WorkflowD workflowD, IdModel modelData) { WorkflowDefinition workflowDefinition = new WorkflowDefinition().queryOneByWrapper( Pops.<WorkflowDefinition>lambdaQuery() .from(WorkflowDefinition.MODEL_MODEL) .eq(WorkflowDefinition::getWorkflowCode, workflowD.getCode()) .eq(WorkflowDefinition::getActive, 1) ); if (null == workflowDefinition) { // 流程没有运⾏实例 return Boolean.FALSE; } String model = Models.api().getModel(modelData); //⼯作流上下⽂ WorkflowDataContext wdc = new WorkflowDataContext(); wdc.setDataType(WorkflowVariationTypeEnum.ADD); wdc.setModel(model); wdc.setWorkflowDefinitionDefinition(workflowDefinition.parseContent()); wdc.setWorkflowDefinition(workflowDefinition); wdc.setWorkflowDefinitionId(workflowDefinition.getId()); IdModel copyData = KryoUtils.get().copy(modelData); // ⼿动触发创建的动作流,将操作⼈设置为当前⽤户,作为流程的发起⼈ copyData.setCreateUid(PamirsSession.getUserId()); copyData.setWriteUid(PamirsSession.getUserId()); String jsonData = JsonUtils.toJSONString(copyData.get_d()); //触发⼯作流 新增时触发-onCreateManual 更新时触发-onUpdateManual Fun.run(WorkflowModelTriggerFunction.FUN_NAMESPACE, "onCreateManual", wdc, msgId, jsonData); return Boolean.TRUE; }

    2023年11月7日
    1.2K00
  • 【PostgreSQL】后端部署使用PostgreSQL数据库

    PostgreSQL数据库配置 驱动配置 Maven配置(14.3版本可用) <postgresql.version>42.6.0</postgresql.version> <dependency> <groupId>org.postgresql</groupId> <artifactId>postgresql</artifactId> <version>${postgresql.version}</version> </dependency> 离线驱动下载 postgresql-42.2.18.jarpostgresql-42.6.0.jarpostgresql-42.7.3.jar JDBC连接配置 pamirs: datasource: base: type: com.alibaba.druid.pool.DruidDataSource driverClassName: org.postgresql.Driver url: jdbc:postgresql://127.0.0.1:5432/pamirs?currentSchema=base username: xxxxxx password: xxxxxx 连接url配置 暂无官方资料 url格式 jdbc:postgresql://${host}:${port}/${database}?currentSchema=${schema} 在jdbc连接配置时,${database}和${schema}必须完整配置,不可缺省。 其他连接参数如需配置,可自行查阅相关资料进行调优。 方言配置 pamirs方言配置 pamirs: dialect: ds: base: type: PostgreSQL version: 14 major-version: 14.3 pamirs: type: PostgreSQL version: 14 major-version: 14.3 数据库版本 type version majorVersion 14.x PostgreSQL 14 14.3 PS:由于方言开发环境为14.3版本,其他类似版本(14.x)原则上不会出现太大差异,如出现其他版本无法正常支持的,可在文档下方留言。 schedule方言配置 pamirs: event: enabled: true schedule: enabled: true dialect: type: PostgreSQL version: 14 major-version: 14.3 type version majorVersion PostgreSQL 14 14.3 PS:由于schedule的方言在多个版本中并无明显差异,目前仅提供一种方言配置。 其他配置 逻辑删除的值配置 pamirs: mapper: global: table-info: logic-delete-value: (EXTRACT(epoch FROM CURRENT_TIMESTAMP) * 1000000 + EXTRACT(MICROSECONDS FROM CURRENT_TIMESTAMP))::bigint PostgreSQL数据库用户初始化及授权 — init root user (user name can be modified by oneself) CREATE USER root WITH PASSWORD 'password'; — if using automatic database and schema creation, this is very important. ALTER USER root CREATEDB; SELECT * FROM pg_roles; — if using postgres database, this authorization is required. GRANT CREATE ON DATABASE postgres TO root;

    2023年11月1日
    93300

Leave a Reply

登录后才能评论