4.1.14 Search之非存储字段条件

search默认查询的是模型的queryPage函数,但我们有时候需要替换调用的函数,这个特性会在下个版本支持。其核心场景为当搜索条件中有非存储字段,如果直接用queryPage函数的rsql拼接就会报错,所以非存储字段不会增加在rsql中。本文介绍一个比较友好的临时替代方案。

非存储字段条件(举例)

Step1 为PetTalent新增一个非存储字段unStore

 @Field(displayName = "非存储字段测试",store = NullableBoolEnum.FALSE)
 private String unStore;

图4-1-14-1 为PetTalent新增一个非存储字段unStore

Step2 修改PetTalent的Table视图的Template

标签内增加一个查询条件

<field data="unStore" />

图4-1-14-2 修改PetTalent的Table视图的Template

Step3 重启看效果

进入宠物达人列表页,在搜索框【非存储字段测试】输入查询内容,点击搜索跟无条件一致

Step4 修改PetTalentAction的queryPage方法

package pro.shushi.pamirs.demo.core.action;
…… 引入依赖类
@Model.model(PetTalent.MODEL_MODEL)
@Component
public class PetTalentAction {
 ……其他代码
 @Function.Advanced(type= FunctionTypeEnum.QUERY)
 @Function.fun(FunctionConstants.queryPage)
 @Function(openLevel = {FunctionOpenEnum.API})
 public Pagination<PetTalent> queryPage(Pagination<PetTalent> page, IWrapper<PetTalent> queryWrapper){
 QueryWrapper<PetTalent> queryWrapper1 = (QueryWrapper<PetTalent>) queryWrapper;
 Map<String, Object> queryData = queryWrapper.getQueryData();
 String unStore = (String) queryData.get(LambdaUtil.fetchFieldName(PetTalent::getUnStore));
 if (StringUtils.isNotEmpty(unStore)) {
 //转换查询条件
 queryWrapper1.like(

图4-1-14-3 修改PetTalentAction的queryPage方法

Step5 重启看效果

在搜索框【非存储字段测试】输入查询内容,跟通过【达人】字段搜索的效果是一致的

image.png

图4-1-14-4 示例效果

Oinone社区 作者:史, 昂原创文章,如若转载,请注明出处:https://doc.oinone.top/oio4/9289.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
史, 昂的头像史, 昂数式管理员
上一篇 2024年5月23日
下一篇 2024年5月23日

相关推荐

  • 4.3 Oinone的分布式体验

    在oinone的体系中分布式比较独特,boot工程中启动模块中包含就走本地,不包含就走远程,本文带您体验下分布式部署以及分布式部署需要注意点。 看下面例子之前先把话术统一下:启动或请求SecondModule代表启动或请求pamirs-second-boot工程,启动或请求DemoModule代表启动或请求pamirs-demo-boot工程,并没有严格意义上启动哪个模块之说,只有启动工程包含哪个模块。 一、构建SecondModule模块 Step1 构建模块工程 参考3.2.1【构建第一个Module】一文,利用脚手架工具构建一个SecondModule,记住需要修改脚本。 脚本修改如下: #!/bin/bash # 项目生成脚手架 # 用于新项目的构建 # 脚手架使用目录 # 本地 local # 本地脚手架信息存储路径 ~/.m2/repository/archetype-catalog.xml archetypeCatalog=local # 以下参数以pamirs-second为例 # 新项目的groupId groupId=pro.shushi.pamirs.second # 新项目的artifactId artifactId=pamirs-second # 新项目的version version=1.0.0-SNAPSHOT # Java包名前缀 packagePrefix=pro.shushi # Java包名后缀 packageSuffix=pamirs.second # 新项目的pamirs platform version pamirsVersion=4.6.0 # Java类名称前缀 javaClassNamePrefix=Second # 项目名称 module.displayName projectName=OinoneSecond # 模块 MODULE_MODULE 常量 moduleModule=second_core # 模块 MODULE_NAME 常量 moduleName=SecondCore # spring.application.name applicationName=pamirs-second # tomcat server address serverAddress=0.0.0.0 # tomcat server port serverPort=8090 # redis host redisHost=127.0.0.1 # redis port redisPort=6379 # 数据库名 db=demo # zookeeper connect string zkConnectString=127.0.0.1:2181 # zookeeper rootPath zkRootPath=/second mvn archetype:generate \ -DinteractiveMode=false \ -DarchetypeCatalog=${archetypeCatalog} \ -DarchetypeGroupId=pro.shushi.pamirs.archetype \ -DarchetypeArtifactId=pamirs-project-archetype \ -DarchetypeVersion=4.6.0 \ -DgroupId=${groupId} \ -DartifactId=${artifactId} \ -Dversion=${version} \ -DpamirsVersion=${pamirsVersion} \ -Dpackage=${packagePrefix}.${packageSuffix} \ -DpackagePrefix=${packagePrefix} \ -DpackageSuffix=${packageSuffix} \ -DjavaClassNamePrefix=${javaClassNamePrefix} \ -DprojectName="${projectName}" \ -DmoduleModule=${moduleModule} \ -DmoduleName=${moduleName} \ -DapplicationName=${applicationName} \ -DserverAddress=${serverAddress} \ -DserverPort=${serverPort} \ -DredisHost=${redisHost} \ -DredisPort=${redisPort} \ -Ddb=${db} \ -DzkConnectString=${zkConnectString} \ -DzkRootPath=${zkRootPath} 图4-3-1 构建一个名为SecondModule的模块 脚步执行生成工程如下: 图4-3-2 SecondModule的工程结构 Step2 调整配置 修改application-dev.yml文件 修改SecondModule的application-dev.yml的内容 base库换成与DemoModule一样的配置,配置项为:pamirs.datasource.base pamirs: datasource: base: driverClassName: com.mysql.cj.jdbc.Driver type: com.alibaba.druid.pool.DruidDataSource url: jdbc:mysql://127.0.0.1:3306/demo_base?useSSL=false&allowPublicKeyRetrieval=true&useServerPrepStmts=true&cachePrepStmts=true&useUnicode=true&characterEncoding=utf8&serverTimezone=Asia/Shanghai&autoReconnect=true&allowMultiQueries=true username: root # 数据库用户 password: oinone # 数据库用户对应的密码 initialSize: 5 maxActive: 200 minIdle: 5 maxWait: 60000 timeBetweenEvictionRunsMillis: 60000…

    2024年5月23日
    1.3K00
  • 5.1 CDM的背景介绍

    如果说低代码开发框架输出技术标准,CDM则是结合oinone技术特性和软件工程设计,让输出数据标准变成可能。 一、背景介绍 无法照搬的最佳实践 要了解引入CDM的初衷,得从互联网架构的演进开始,了解其过程,就知道为什么说Oinone的CDM是中台架构的最佳技术实践的核心!我们在2.2【互联架构做为最佳实践为何失效】一文中介绍过互联网技术发展的四个阶段,特别平台化到中台化的阶段,目的是在一套规范下让听的见炮火声音的团队自行决定业务系统发展,适用多业务线(或多场景应用)独立发展。 互联网架构在演进过程中碰到的问题跟企业数字化转型过程中碰到的问题是非常类似: 随着企业业务在线化后对系统性能、稳定都提出了更高的要求,而且大部分企业的内部很多系统相互割裂导致,导致很多重复建设,所以我们需要服务化、平台化。 同时没有一个供应商能解决企业所有商业场景问题,又需要多个供应商共同参与,所以把供应商类类比成各个业务线,在一套规范下让供应商自行决定业务系统发展 既然跟阿里当初在架构演进过程中碰到的问题非常类似,那么是不是照搬阿里中台架构方案到企业就好了?当然不是,因为历史原因阿里的中台架构是采用的平台共建模式:“让业务线研发以平台设计好的规范进来共同开发”,其本质还是平台主导模式,它是有非常大的历史包袱。我们想象各个供应商的共建一个交易平台或商品平台,那是多么荒唐的事情,平台化已经足够的复杂了,还让不同背景、不同企业的研发一起共建,最后往往导致企业架构负载过重,这时对企业来说便不再是赋能而是“内耗”。 那么如果没有历史包袱,我们重新设计,站在上帝视角去看有没有更好的方式呢?当然有 借鉴微软的CDM 这里我们借鉴微软的CDM理念,CDM这个概念最早是2016年微软宣布“以Dynamics 365的形式改造其CRM和ERP”战略时提出的。微软给它的定义是“用于存储和管理业务实体的业务数据库,而且是开箱即用的”。CDM不仅仅提供标准实体,它还允许用户建立个性化的实体,用户可以扩展标准实体也可以增加和标准实体相关的新实体。 CDM可能并不性感,但绝对是非常必要的。它成为了微软的很多产品的基础,是构建了无数业务领域的原型。同时微软也期望它能成为快速实现数据交换和迁移的标准,这个有点像菜鸟网络推出的奇门,让所有TMS、OMS、WMS都基于一套数据接口API进行互通,一套标准是为了解决一个行业问题,而不是具体某一个企业一个集团的问题。 我们发现CDM的理念跟我们想要的“企业级的数据标准”是非常吻合的。但是我们也不能照搬照抄,虽然微软的CDM很好的解决了数据割裂问题,但就模型来说就够大家喝一壶了,模型库非常庞大而且复杂,学习成本巨高。 数字化时代软件会产生新的技术流派 我们知道传统软件的设计理念:侧重在模型对业务支撑全面性上。优点体现为配置丰富,缺点模型设计过于复杂,刚开始有前瞻性,但在理解、维护都非常困难,随着业务发展系统原先的设计逐渐腐化,异常笨重。 而Oinone的CDM设计理念:侧重在简单、灵活、统一上,体现为在上层应用开发时,每一业务领域保持独立,模型简单易懂,并结合Oinone的低代码开发机制进行快速开发,灵活应对业务变化。 所以我更想说Oinone的CDM是微软CDM的在原有基础上,与互联网架构结合,利用Oinone低代码开发平台特性形成新的工程化建议。Oinone-CDM不以把模型抽象到极致,支撑“所有业务可能性”为目标,而是抽象80%通用的设计,保持模型简单可复用,来解决数据割裂问题,并保持业务线独立自主性,快速创新的能力。 图5-1-1 Oinone-CDM要解决的问题 二、Oinone的CDM本质是创新的工程化建议 引入CDM以后系统工程结构会有什么变化,跟大家认知的互联网架构有什么区别。 原本上层的业务线系统,需要调用各个业务平台提供的功能,增加CDM以后也就是我们右的图,每个业务线就像一个独立右边。看上去复杂了,其实对业务线来说更加简单了。 互联网整体平台化带来的问题: 业务线每次业务调整都需要给各个平台提需求 业务平台研发需要了解所有业务线的知识再做设计,对研发要求非常高 各个业务域的不同需求相互影响包括系统稳定性、研发对需求响应的及时性 结合oinone特性提出的新工程建议: 一些通用性模块继续以平台化的方式存在,能力完全复用。 业务线自建业务平台,保持业务线的独立性和敏捷性 业务线以CDM为原型,保证核心数据不割裂,形成一致的数据规范 图5-1-2 引入CDM概念后的工程结构对比 三、CDM思路示意图 该示例中OinoneCDM的商品域不仅仅提供标准实体,保证各个业务系统的对商品的通用需求、简单易懂,在我们星空系列业务产品中如全渠道运营、B2B交易等系统以此为基础建立属于自身个性化的实体,可以扩展标准实体也可以增加和标准实体相关的新实体。 带来的好处: 通过多种继承方式,继承后的模型可扩展模型本身、模型行为等,从而解决业务独立性问题。 通过CDM层统一数据模型,从而解决多应用数据割裂问题 图5-1-3 Oinone-CDM思路示意图

    2024年5月23日
    98400
  • 4.1.22 框架之分布式缓存

    分布式缓存Oinone平台主要用到了Redis,为了让业务研发时可以无感使用RedisTemplate和StringRedisTemplate,已经提前注册好了redisTemplate和stringRedisTemplate,而且内部会自动处理相关特殊逻辑以应对多租户环境,小伙伴不能自己重新定义Redis的相关bean。 使用说明 配置说明 spring: redis: database: 0 host: 127.0.0.1 port: 6379 timeout: 2000 # cluster: # nodes: # – 127.0.0.1:6379 # timeout: 2000 # max-redirects: 7 jedis: pool: # 连接池中的最大空闲连接 默认8 max-idle: 8 # 连接池中的最小空闲连接 默认0 min-idle: 0 # 连接池最大连接数 默认8 ,负数表示没有限制 max-active: 8 # 连接池最大阻塞等待时间(使用负值表示没有限制) 默认-1 max-wait: -1 图4-1-22-1 分布式缓存配置说明 代码示例 package pro.shushi.pamirs.demo.core.service; import org.springframework.stereotype.Component; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.core.StringRedisTemplate; @Component public class Test { @Autowired private RedisTemplate redisTemplate; @Autowired private StringRedisTemplate stringRedisTemplate } 图4-1-22-2 代码示例

    Oinone 7天入门到精通 2024年5月23日
    1.2K00
  • 4.5.1 研发辅助之插件-结构性代码

    研发辅助意在 消灭研发过程中的重复性工作提升研发效率,如结构性代码 提供生产示例性代码,如果根据模型生成导入导出、view自定义配置等经常性开发 一、插件安装 根据自身Idea版本下载插件并安装: 版本 插件 2023.1 pamirs-source-maker-1.0.0-2023.1.zip(2.4 MB) 2021.1 pamirs-source-maker-1.0.0-2021.1.zip(2.4 MB) 2021.2 pamirs-source-maker-1.0.0-2021.2.zip(2.4 MB) 2021.3 pamirs-source-maker-1.0.0-2021.3.zip(2.4 MB) 2022.1 pamirs-source-maker-1.0.0-2022.1.zip(2.4 MB) pamirs-source-maker-1.0.0-223-EAP-SNAPSHOT(2.4 MB) 表4-5-1-1 插件列表 二、研发辅助之配置式结构性代码生成器 我们在开发过程中为了日后代码易于维护和修改,往往会做工程性的职责划分。 除去模型外会有 代理模型和代理模型Action来负责前端交互 以面向接口的形式来定义函数,就会有api和实现类之分 如果项目有多端,那么如代理模型和代理模型Action又要为每一个端构建一份 在大型项目的初始阶段,我们需要手工重复做很多事情,特别麻烦。现在用oinone的研发辅助插件的结构性代码生成器,就可以避免前面的重复工作 插件执行的配置文件 <?xml version="1.0" encoding="utf-8" ?> <oinone> <makers> <!– 根据模型生成代理类、代理类的Action、Service、ServiceImpl –> <maker> <!– 选择模型所在位置 –> <modelPath>/Users/oinone/Documents/oinone/demo/pamirs-second/pamirs-second-api/src/main/java/pro/shushi/pamirs/second/api/model</modelPath> <!– 代理模型、代理模型Action生成相关配置信息 –> <proxyModules> <module> <!– 代理模型和代理模型Action的生成位置信息 –> <generatePath>/Users/oinone/Documents/oinone/demo/pamirs-second/pamirs-second-api/src/main/java/pro/shushi/pamirs/second/api</generatePath> <!– 代理模型和代理模型Action的模块前缀 –> <modulePrefix>second</modulePrefix> <!– 代理模型和代理模型Action的模块名,代理模型和代理模型Action类名为moduleName+模型名+"Proxy"+"Action" –> <moduleName>second</moduleName> <!– 代理模型和代理模型Action的包名,实际包名为 packageName+".proxy"或packageName+".action"–> <packageName>pro.shushi.pamirs.second.api</packageName> </module> </proxyModules> <!– 根据模型生成api,包括service(写方法)和queryService(读方法) –> <apiModule> <!– service和queryService的生成位置信息 –> <generatePath>/Users/oinone/Documents/oinone/demo/pamirs-second/pamirs-second-api/src/main/java/pro/shushi/pamirs/second/api</generatePath> <!– service和queryService的模块前缀 –> <modulePrefix>second</modulePrefix> <!– service和queryService的模块名 –> <moduleName>second</moduleName> <!– service和queryService的包名,实际包名为 packageName+".service" –> <packageName>pro.shushi.pamirs.second.api</packageName> </apiModule> <!– 根据模型生成api实现类,包括serviceImpl(写方法)和queryServiceImpl(读方法) –> <coreModule> <!– serviceImpl和queryServiceImpl的生成位置信息 –> <generatePath>/Users/oinone/Documents/oinone/demo/pamirs-second/pamirs-second-core/src/main/java/pro/shushi/pamirs/second/core</generatePath> <!– serviceImpl和queryServiceImpl的模块前缀 –> <modulePrefix>second</modulePrefix> <!– serviceImpl和queryServiceImpl的模块名 –> <moduleName>second</moduleName> <!– serviceImpl和queryServiceImpl的包名,实际包名为 packageName+".service" –> <packageName>pro.shushi.pamirs.second.core</packageName> </coreModule> </maker> </makers> </oinone> 图4-5-1-1 插件执行的配置文件 三、研发辅助之多模型结构性代码生成器 是配置式结构性代码生成器的补充,应对开发后期维护中新增模型的场景。它的不同点在于只要选择模型文件就可以,不需要专门编写xml文件。生成的文件默认就在模型所在路径下 Step1 菜单栏上找到oinone,并点击子菜单【多模型结构性代码生成器】 图4-5-1-2 多模型结构性代码生成操作步骤一 Step2 设置必要的信息 模型前缀 模型的所属模块 代理模型的模块 这三个信息分别用于构建 代理模型的MODEL_MODEL = 模型前缀.代理模型的模块.代理模型类名 服务的FUN_NAMESPACE = 模型前缀.代理模型的模块.服务类名 图4-5-1-3 多模型结构性代码生成操作步骤二 Step3 选择为哪些模型生成对应的结构性代码 图4-5-1-4 多模型结构性代码生成操作步骤三 Step4 代码在模型所在目录 生成的文件默认就在模型所在路径下,您可以手动拖动到对应的包路径当中去 图4-5-1-5 多模型结构性代码生成操作步骤四

    2024年5月23日
    1.1K00
  • 2.1 数字化时代软件业的另一个本质变化

    随着企业从信息化向数字化转变,软件公司提供的产品也由传统的企业管理软件向企业商业支撑软件发展。这一变化带来了许多技术上的挑战和机遇。在之前的章节中,我们提到企业的视角已经从内部管理转向业务在线和生态在线协同,这也带来了一系列新的需求。但是,我们常常会忽视这一变化所带来的对系统要求的变化。在本章中,我们将探讨这些技术上的变化,以及这些变化所带来的机遇和挑战。 图2-1 从信息化到数字化软件本质变化 在信息化时代,企业的业务围绕着内部管理效率展开,借鉴国外优秀的管理经验,企业将其管理流程固化下来,典型的例子是ERP项目。这类项目上线后往往长期稳定,不轻易更改,因此信息化时代软件的技术流派侧重于通过模型对业务进行全面支持。例如,SAP具有丰富的配置能力,将已有企业管理思想抽象到极致。其功能基本上可以通过配置来实现,因此其模型设计特别复杂。但是,我们也应该清楚地了解到,配置是面向已知问题的。在数字化时代,创新和业务迭代速度非常快,这种方法可能就不太适合了。我们知道,模型抽象是在设计时具有前瞻性的,一旦不适合,修改起来就会异常困难。 随着数字化时代的到来,企业主的关注点已经从单一企业内部管理转变为了围绕企业上下游价值链的协同展开。这种变化给企业信息化系统提出了更高的要求,例如业务需求的响应速度、系统性能和用户体验等方面。现在,企业对软件不仅是管理需求的承载,更是业务在线化的承载。传统的重模型设计软件模式已经不再适用,因为业务本身不断创新和变化。因此,数字化时代需要新的软件技术流派,这种流派必须是轻模型加上低代码技术的结合体。通过模型抽象80%的通用场景,剩余的20%个性化需求可以通过技术手段来完成。这样的设计可以让每家企业的研发人员轻松理解模型,而不像ERP模型那样异常复杂,无法进行修改。此外,配合低代码技术可以快速研发和上线。如果说配置化是面向已知问题的,那么低代码就是面向未知问题设计的。虽然低代码的概念可以追溯到上个世纪80年代,当时是为了满足企业内部部门之间有协同需求,但又没有专业软件支撑,定制化开发又不划算的辅助场景。但现在它的核心原因是企业数字化的核心场景不稳定,变化很快,每家企业都有强烈的个性化需求。因此,低代码成为解决这些问题的核心手段,数字化时代的低代码需要具备处理复杂场景的能力,而不仅仅是围绕着内部管理展开。 企业在数字化转型的过程中需要考虑到不仅是成熟的全链路业务解决方案,还要应对数字化场景的快速变化和持续创新的需求。为此,Oinone打造了一站式低代码商业支撑平台,从业务与技术两个维度来帮助企业建立开放、链接、安全的数字化平台。这将在水平和垂直两个维度上全面推动企业数字化转型。 另外,低代码的另一个好处是完成了软件本身的数字化建设。通过基于元数据设计,元数据成为软件中数据、逻辑和交互的数据,软件结合AI可以有更多的创造可能。想象一下,AI了解软件的元数据后可以自我运作,人在极少情况下才需要参与,人机交互也会发生大的改变。未来的软件交互不再需要研发提前预设,而是能够实现用户所需即所呈现的效果。作为一家帮助企业进行数字化转型的软件公司,请问您的数字化转型是否已经完成呢?

    2024年5月23日
    1.2K00

Leave a Reply

登录后才能评论