用户中心

1. 创建用户

  1. 进入用户中心应用,在用户列表中点击创建。

image.png

  1. 填写表单中的必填信息。

    1. 若未设置昵称,则右上角头像右侧展示名称。若设置了昵称,则右上角头像右侧展示昵称。

    2. 是否激活账号选择是,选择否时用户登录会显示“未找到首页”。

    3. 角色分组中,选择创建的用户的角色,默认选择了超级管理员(包含所有权限)。

image.png

  1. 点击确定,用户创建完成。

  2. 用户登录时可用登录账号/邮箱/手机号登录。

2. 用户相关操作

  1. 表格页中包含常规的搜索、批量删除功能。

  2. 冻结:当将“是否有效”状态为“是”时展示,将用户“是否有效”修改为“否”。

  3. 解冻:当将“是否有效”状态为“否”时展示,将用户“是否有效”修改为“是”。

  4. 修改:进入用户信息修改页面,“编码、登录账号、注册时间”只读。

image.png

  1. 重置密码:点击后在弹窗“账号确认”中输入账号,点击重置密码后,展示新密码。

image.png

Oinone社区 作者:史, 昂原创文章,如若转载,请注明出处:https://doc.oinone.top/oio4/9390.html

访问Oinone官网:https://www.oinone.top获取数式Oinone低代码应用平台体验

(0)
史, 昂的头像史, 昂数式管理员
上一篇 2024年6月20日 am9:48
下一篇 2024年6月20日 am9:48

相关推荐

  • 4.1.8 函数之事务管理

    一、事务管理介绍 函数Function支持事务字段为isTransaction(默认为false),事务传播行为propagationBehavior(默认PROPAGATION_SUPPORTS),事务隔离级别isolationLevel(默认使用数据库默认的事务隔离级别),所以不会默认为函数添加事务。另外事务配置提供全局配置。 平台事务管理兼容Spring声明式与编程式事务,支持多数据源事务管理。事务管理中多数据源嵌套独立事务,不会造成死锁风险。使用多数据源或分表操作,不会导致脏读。如果需要多数据源分布式事务,请使用PamirsTransational分布式事务管理方案(@PamirsTransational(enableXa=true))。分布式事务一般用于量小的跨模块配置管理场景 使用方式 声明式事务,使用@PamirsTransactional注解在需要事务管理的类或方法上标注。在非无代码场景下,与@Transactional注解功能一致。 编程式事务,使用PamirsTransactionTemplate即可。在非无代码场景下,与TransactionTemplate功能一致。 配置式事务,使用TxConfig模型在模块安装时初始化存储事务配置数据。 事务特性 原子性 (atomicity):强调事务的不可分割. 一致性 (consistency):事务的执行的前后数据的完整性保持一致. 隔离性 (isolation):一个事务执行的过程中,不应该受到其他事务的干扰 持久性(durability) :事务一旦结束,数据就持久到数据库 事务隔离级别 事务隔离级别指的是一个事务对数据的修改与另一个并行的事务的隔离程度,当多个事务同时访问相同数据时,如果没有采取必要的隔离机制,就可能发生以下问题: 问题 描述 脏读 一个事务读到另一个事务未提交的更新数据,所谓脏读,就是指事务A读到了事务B还没有提交的数据,比如银行取钱,事务A开启事务,此时切换到事务B,事务B开启事务–>取走100元,此时切换回事务A,事务A读取的肯定是数据库里面的原始数据,因为事务B取走了100块钱,并没有提交,数据库里面的账务余额肯定还是原始余额,这就是脏读 不可重复读 在一个事务里面的操作中发现了未被操作的数据 比方说在同一个事务中先后执行两条一模一样的select语句,期间在此次事务中没有执行过任何DDL语句,但先后得到的结果不一致,这就是不可重复读 幻读 是指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。 同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象 发生了幻觉一样。 表4-1-8-1 事务隔离级别 Pamirs(Spring)支持的隔离级别 隔离级别 描述 DEFAULT 使用数据库本身使用的隔离级别 ORACLE(读已提交) MySQL(可重复读) READ_UNCOMITTED 读未提交(脏读)最低的隔离级别,一切皆有可能。 READ_COMMITED 读已提交,ORACLE默认隔离级别,有不可重复读以及幻读风险。 REPEATABLE_READ 可重复读,解决不可重复读的隔离级别,但还是有幻读风险。 SERLALIZABLE 串行化,最高的事务隔离级别,不管多少事务,挨个运行完一个事务的所有子事务之后才可以执行另外一个事务里面的所有子事务,这样就解决了脏读、不可重复读和幻读的问题了 表4-1-8-2 隔离级别与描述 隔离级别 脏读可能性 不可重复读可能性 幻读可能性 加锁度 READ_UNCOMITTED 是 是 是 否 READ_COMMITED 否 是 是 否 REPEATABLE_READ 否 否 是 否 SERLALIZABLE 否 否 否 是 表4-1-8-3 隔离级别说明表 事务的传播行为 保证同一个事务中 PROPAGATION_REQUIRED 支持当前事务,如果不存在 就新建一个(默认) PROPAGATION_SUPPORTS 支持当前事务,如果不存在,就不使用事务 PROPAGATION_MANDATORY 支持当前事务,如果不存在,抛出异常 保证没有在同一个事务中 PROPAGATION_REQUIRES_NEW 如果有事务存在,挂起当前事务,创建一个新的事务 PROPAGATION_NOT_SUPPORTED 以非事务方式运行,如果有事务存在,挂起当前事务 PROPAGATION_NEVER 以非事务方式运行,如果有事务存在,抛出异常 PROPAGATION_NESTED 如果当前事务存在,则嵌套事务执行 A中嵌套B事务,嵌套PROPAGATION_REQUIRES_NEW方法勿与A在同类中。 异常状态 PROPAGATION_REQUIRES_NEW (两个独立事务) PROPAGATION_NESTED (B的事务嵌套在A的事务中) PROPAGATION_REQUIRED (同一个事务) A抛异常 B正常 A回滚,B正常提交 A与B一起回滚 A与B一起回滚 A正常 B抛异常 1.如果A中捕获B的异常,并没有继续向上抛异常,则B先回滚,A再正常提交; 2.如果A未捕获B的异常,默认则会将B的异常向上抛,则B先回滚,A再回滚 B先回滚,A再正常提交 A与B一起回滚 A抛异常B抛异常 B先回滚,A再回滚 A与B一起回滚 A与B一起回滚 A正常 B正常 B先提交,A再提交 A与B一起提交 A与B一起提交 表4-1-8-4 事务传播行为 二、声明式事务(举例) Step1 修改PetShopBatchUpdateAction 用@PamirsTransactional或者@Transactional注解来声明事务,PamirsTransactional跟Spring的Transactional区别在于PamirsTransactional支持多库事务,但此多库事务为非严格的分布式多库事务,之所以选择这个方案,原因如下 a. 不损害任何性能。 b. 事务保障率超过4个9 c. 经过阿里的大厂验证,特别是在阿里的结算平台中得到了很好的验证 @PamirsTransactional更多配置项请详见4.1.7【函数之元数据详解】一文,自己多试试。同时@PamirsTransactional百分百兼容@Transactional @Action(displayName = "确定",bindingType = ViewTypeEnum.FORM,contextType = ActionContextTypeEnum.SINGLE) @PamirsTransactional //@Transactional public PetShopBatchUpdate conform(PetShopBatchUpdate data){ if(data.getPetShopList() == null || data.getPetShopList().size()==0){ throw PamirsException.construct(DemoExpEnumerate.PET_SHOP_BATCH_UPDATE_SHOPLIST_IS_NULL).errThrow(); } List<PetShopProxy> proxyList = data.getPetShopList(); for(PetShopProxy petShopProxy:proxyList){ petShopProxy.setDataStatus(data.getDataStatus()); } new PetShopProxy().updateBatch(proxyList); throw PamirsException.construct(DemoExpEnumerate.SYSTEM_ERROR).errThrow(); // return data; } 图4-1-8-1 修改PetShopBatchUpdateAction Step2 重启看效果 进入店铺管理列表页,选择记录点击【批量更新数据状态】按钮,修改记录的数据状态为【未启用】,提交看效果。期望效果为:提示系统异常,数据修改失败 图4-1-8-2 数据状态显示已启用 图4-1-8-3 批量更新数据状态…

    2024年5月23日
    84400
  • 3.3.3 模型的数据管理器

    数据管理器和数据构造器是Oinone为模型自动赋予的Function是内在数据管理能力,数据管理器针对存储模型是方便在大家编程模式下可以利用数据管理器Function快速达到相关数据操作的目的。数据构造器则主要用于模型进行初始化时字段默认值计算和页面交互 数据管理器 只有存储模型才有数据管理器。如果@Model.Advanced注解设置了dataManager属性为false,则表示在UI层不开放默认数据管理器。开放级别为API则表示UI层可以通过HTTP请求利用4.1.15【Pamirs标准网关协议】进行数据交互。 模型默认数据读管理器 函数编码 描述 开放级别 queryByPk 根据主键查询单条记录,会进行主键值检查 Local、Remote queryByEntity 根据实体查询单条记录 Local、Remote、Api queryByWrapper 根据查询类查询单条记录 Local、Remote queryListByEntity 根据实体查询返回记录列表 Local、Remote queryListByWrapper 根据查询类查询记录列表 Local、Remote queryListByPage 根据实体分页查询返回记录列表 Local、Remote queryListByPageAndWrapper 根据查询类分页查询记录列表 Local、Remote queryPage 分页查询返回分页对象,分页对象中包含记录列表 Local、Remote、Api countByEntity 按实体条件获取记录数量 Local、Remote countByWrapper 按查询类条件获取记录数量 Local、Remote 表3-3-3-1 模型默认数据读管理器 模型默认数据写管理器 函数编码 描述 开放级别 createOne 提交新增单条记录 Local、Remote createOrUpdate 新增或更新,需要为模型设置唯一索引,如果数据库检测到索引冲突,会更新数据,若未冲突则新增数据 Local、Remote updateByPk 根据主键更新单条记录,会进行主键值检查 Local、Remote updateByUniqueField 条件更新,条件中必须包含唯一索引字段 Local、Remote updateByEntity 按实体条件更新记录 Local、Remote、Api updateByWrapper 按查询类条件更新记录 Local、Remote createBatch 批量新增记录 Local、Remote createOrUpdateBatch 批量新增或更新记录 Local、Remote updateBatch 根据主键批量更新记录,会进行主键值检查 Local、Remote deleteByPk 根据主键删除单条记录,会进行主键值检查 Local、Remote deleteByPks 根据主键批量删除,会进行主键值检查 Local、Remote deleteByUniqueField 按条件删除记录,条件中必须包含唯一索引字段 Local、Remote deleteByEntity 根据实体条件删除 Local、Remote、Api deleteByWrapper 根据查询类条件删除 Local、Remote createWithField 新增实体记录并更新实体字段记录 Local、Remote、Api updateWithField 更新实体记录并更新实体字段记录 Local、Remote、Api deleteWithFieldBatch 批量删除实体记录并删除关联关系 Local、Remote、Api 表3-3-3-2 模型默认数据写管理器 如果模型继承IdModel,模型会自动设置主键设置为id,则会继承queryById、updateById和deleteById函数。 queryById(详情,根据ID查询单条记录,开放级别为Remote) updateById(提交更新单条记录,根据ID更新单条记录,开放级别为Remote) deleteById(提交删除单条记录,根据ID删除单条记录,开放级别为Remote) 如果模型继承CodeModel,模型也会继承IdModel的数据管理器,编码字段code为唯一索引字段。在新增数据时会根据编码生成规则自动设置编码字段code的值,继承queryByCode、updateByCode和deleteByCode函数。 queryByCode(详情,根据code查询单条记录,开放级别为Remote) updateByCode(提交更新单条记录,根据code更新单条记录,开放级别为Remote) deleteByCode(提交删除单条记录,根据code删除单条记录,开放级别为Remote) 没有主键或唯一索引的模型,在UI层不会开放默认数据写管理器。 #### 使用场景 图3-3-3-1 数据管理器使用场景 数据构造器 模型数据构造器 construct:供前端新开页面构造默认数据使用。所有模型都拥有construct构造器,默认会将字段上配置的默认值返回给前端,另外可以在子类中覆盖construct方法。数据构造器 construct函数的开放级别为API,函数类型为QUERY查询函数,系统将识别模型中的以construct命名的函数强制设置为API开放级别和QUERY查询类型。 可以使用@Field的defaultValue属性配置字段的默认值。注意,枚举的默认值为枚举的name。

    2024年5月23日
    1.3K10
  • 流程触发

    1. 流程触发 新增的流程设计页面默认包含两个节点,一个是流程的触发节点:确定流程开始的条件;另一个是流程结束的节点。 流程触发方式有模型触发、定时触发、日期触发三种方式,未设置流程触发方式时无法继续添加后续流程节点,同时无法进行流程发布,如左下图。触发方式设置完成后,可从左侧菜单栏拖入或流程箭头中的加号点击添加节点动作,如右下图。 1.1 模型触发 模型触发适用于模型中的数据字段变化开始流程的场景,比如员工请假审批流程。 模型触发的场景有数据的增删改,也可以对模型中的单个或多个字段进行条件筛选,若包含更新数据的场景可以设置选择更新字段,只有设置的字段更新才会触发流程,若不设置选择更新字段或者筛选条件,则模型中任一字段发生设置场景的变化时都会触发流程。 1.2 定时触发 定时触发适用于周期性调用流程的场景,比如仓库周期性盘点的流程。 需要设置一个流程第一次执行的时间,配置好循环的周期间隔。特殊的是选择周为周期时,当前周选中的日期也会执行流程。例:开始时间:2022-01-14(周四) 循环周期间隔:1周 自定义设置为周一到周五,则2022-01-15(本周五)也会执行流程操作。 1.3 日期触发 日期触发适用于模型中的日期时间字段引发流程的场景,比如给员工发生日祝福短信的流程。 设置日期触发时,若指定字段只包含日期,则必须要指定时刻,如左下图。例如给员工发生日祝福短信时根据模型中的员工生日数据获取到了执行流程的日期,需要制定开始该流程执行的具体时刻。若指定字段包含日期和时间,则不填写指定时刻时默认按照字段中的时刻开始执行流程,如右下图。例如办理业务后短信回访收集评价时根据模型中的业务完成时间,立即或延时发送短息。

    2024年6月20日
    1.0K00
  • 4.1.9 函数之元位指令

    元位指令系统是通过给请求上下文的指令位字段作按位与标记来对函数处理下发对应指令的系统。 一、元位指令介绍 元位指令系统是通过给请求上下文的指令位字段作按位与标记来对函数处理下发对应指令的系统。 元位指令系统分为请求上下文指令和数据指令两种。 数据指令 数据指令基本都是系统内核指令。业务开发时用不到这里就不介绍了。前20位都是系统内核预留 请求上下文指令 请求上下文指令:使用session上下文中非持久化META_BIT属性设置指令。 位 指令 指令名 前端默认值 后端默认值 描述 20 builtAction 内建动作 否 否 是否是平台内置定义的服务器动作对应操作:PamirsSession.directive().disableBuiltAction(); PamirsSession.directive().enableBuiltAction(); 21 unlock 失效乐观锁 否 否 系统对带有乐观锁模型默认使用乐观锁对应操作:PamirsSession.directive().enableOptimisticLocker(); PamirsSession.directive().disableOptimisticLocker(); 22 check 数据校验 是 否 系统后端操作默认不进行数据校验,标记后生效数据校验对应操作:PamirsSession.directive().enableCheck(); PamirsSession.directive().disableCheck(); 23 defaultValue 默认值计算 是 否 是否自动填充默认值对应操作:PamirsSession.directive().enableDefaultValue(); PamirsSession.directive().disableDefaultValue(); 24 extPoint 执行扩展点 是 否 前端请求默认执行扩展点,可以标记忽略扩展点。后端编程式调用数据管理器默认不执行扩展点对应操作:PamirsSession.directive().enableExtPoint(); PamirsSession.directive().disableExtPoint(); 25 hook 拦截 是 否 是否进行函数调用拦截对应操作:PamirsSession.directive().enableHook(); PamirsSession.directive().disableHook(); 26 authenticate 鉴权 是 否 系统默认进行权限校验与过滤,标记后使用权限校验对应操作:PamirsSession.directive().sudo(); PamirsSession.directive().disableSudo(); 27 ormColumn ORM字段别名 否 否 系统指令,请勿设置 28 usePkStrategy 使用PK策略 是 否 使用PK是否空作为采用新增还是更新的持久化策略对应操作:PamirsSession.directive().enableUsePkStrategy(); PamirsSession.directive().disableUsePkStrategy(); 29 fromClient 是否客户端调用 是 否 是否客户端(前端)调用对应操作:PamirsSession.directive().enableFromClient(); PamirsSession.directive().disableFromClient(); 30 sync 同步执行函数 否 否 异步执行函数强制使用同步方式执行(仅对Spring Bean有效) 31 ignoreFunManagement 忽略函数管理 否 否 忽略函数管理器处理,防止Spring调用重复拦截对应操作:PamirsSession.directive().enableIgnoreFunManagement(); PamirsSession.directive().disableIgnoreFunManagement(); 表4-1-9-1 请求上下文指令 二、使用指令 普通模式 PamirsSession.directive().disableOptimisticLocker(); try{ 更新逻辑 } finally { PamirsSession.directive().enableOptimisticLocker(); } 图4-1-9-1 普通模式代码示意 批量设置模式 Models.directive().run(() -> {此处添加逻辑}, SystemDirectiveEnum.AUTHENTICATE) 图4-1-9-2 批量设置模式代码示意 三、使用举例 我们在4.1.5【模型之持久层配置】一文中提到过失效乐观锁,我们在这里就尝试下吧。 Step1 修改PetItemInventroyAction 手动失效乐观锁 package pro.shushi.pamirs.demo.core.action; import org.springframework.stereotype.Component; import pro.shushi.pamirs.demo.api.model.PetItemInventroy; import pro.shushi.pamirs.meta.annotation.Function; import pro.shushi.pamirs.meta.annotation.Model; import pro.shushi.pamirs.meta.api.session.PamirsSession; import pro.shushi.pamirs.meta.constant.FunctionConstants; import pro.shushi.pamirs.meta.enmu.FunctionOpenEnum; import pro.shushi.pamirs.meta.enmu.FunctionTypeEnum; import java.util.ArrayList; import java.util.List; @Model.model(PetItemInventroy.MODEL_MODEL) @Component public class PetItemInventroyAction { @Function.Advanced(type= FunctionTypeEnum.UPDATE) @Function.fun(FunctionConstants.update) @Function(openLevel = {FunctionOpenEnum.API}) public PetItemInventroy update(PetItemInventroy data){ List<PetItemInventroy> inventroys = new ArrayList<>(); inventroys.add(data); PamirsSession.directive().disableOptimisticLocker(); try{ //批量更新会,自动抛错 int i = data.updateBatch(inventroys); //单记录更新,不自动抛售需要自行判断 // int i = data.updateById();…

    2024年5月23日
    71100
  • 1.4 Oinone对软件特性的思考

    我在个人的微信公众号上《浅谈企业IT架构的十年困局》一文中写了“企业或者软件公司在工程领域都关注哪些特征,而这些特征又应与具体研发人员的个体能力无关”的相关内容。收到很多业内人士的留言,也引起了很多同行的共鸣,所以今天在这里也打算针对这个话题,跟大家再做个深入的探讨。 一、首先为什么强调要跟研发个体能力无关 我们先来看一个故事: 轮扁是春秋时期齐国的木工,齐桓公召其入宫打造物件。有一天,齐桓公在堂上看书,轮扁在堂下用椎、凿等工具做车轮。 齐桓公看书看到得意处,不由得读出声来。轮扁听到读书声,想了想,放下手里的工具,走上堂来,在齐桓公面前几步远的地方停下,恭恭敬敬地说:“请恕臣斗胆问一下,君王读的是什么书?”齐桓公没想到这个老木匠会走上堂来,倒有点意外。不过看在他年纪大的份上,倒也不去斥责他,就回答说:“寡人读的是圣人写的书。”轮扁问:“圣人还在吗?”齐桓公说:“已经死了。”轮扁说:“这样看起来,君王所读的,不过是古人的糟粕而已!”齐桓公勃然大怒,说:“寡人读书,你一个做车轮的怎么敢议论?你说,这书上怎么会是古人的糟粕?说出道理便罢,说不出道理便难逃一死!” 轮扁不慌不忙地说:“臣是根据臣所从事的活计而明白这个道理的。砍削轮子,榫头做得宽了则松滑而不牢固,做得太紧就必然涩滞而安不进去,臣制作的榫头松紧适宜,是因为心里怎样想的手便怎样去做。然而尽管所需要的分寸度数心里都明白,要把它用言辞表达出来却实在不可能,全靠自己手与心的配合。所以,臣无法将其中的奥秘传授给儿子,臣的儿子也无法从臣这里学到其中的奥秘。因此,臣如今七十多岁了,还只好亲手去干制作轮子的活。这样看来,古人之道的精华都已随着古人死去而无法传世,那么君王所读的,不就是古人的糟粕了吗?” 这就是著名的成语故事——轮扁斫轮,出自《庄子·天道》。庄子通过轮扁的言论,深刻地揭示了高妙之技的难以言传。 而当我们转换视角,在企业数字化转型领域,无论是软件公司还是甲方IT团队,核心上是应用级开发需求,更多的精力应该放在业务场景理解、需求把控以及业务系统实现上。但往往在一个项目进入研发之前,会花很大力气在技术架构设计、技术栈选型、通用能力对接、扩展点设计这些跟业务场景无关的技术事项上,且需要高级别的架构师来主导。大部分情况下,架构师会选开源框架来实现,慢慢沉淀为企业的研发标准体系,所以底层架构的能力往往依赖架构师个人能力。不禁发现他们与轮扁有着异曲同工之处。架构师所积累的个人经验和技术能力,往往难以通过简单的手把手教学、技术评审会完全传递给团队中的其他成员。即使有所传授,其效率也可能仅达到50%,并且随着团队成员数量的增加,这种效率还可能持续递减。因此,我们需要更多地依赖于技术手段,将架构师的经验和能力固化下来,形成一套可复制、可推广的标准技术产品。这样,每个团队成员都能够通过学习和运用这些技术,达到至少70%的传递效率,从而确保团队整体技术水平的稳步提升。这也正是开篇所强调的,企业或软件公司在工程领域所关注的特征,应当与具体研发人员的个体能力相剥离,而更多地依赖于标准化、系统化的技术手段,来确保团队整体的高效运作。 二、软件公司在工程化领域都关注哪些特征 接下来,我将从技术角度深入剖析设计初衷和技术实现原理,以展现技术公司应当“被标准化的特征”究竟长什么样。 先做个名称解释,下文中涉及“标品”、“升级”、“扩展逻辑”,这是站在软件公司角度出发描述的,如果是企业内部可以把标品理解为特定业务应用平台,升级则是业务应用平台的正常规划迭代,扩展逻辑理解为脱离平台发展的临时性需求。 1. 可逆计算 可逆计算,在应用上的特征图 场景:调查发现企业研发至少有40%的精力在跟各条业务线的团队在评审项目需求,判断需求是否合理。而且业务线对需求完善时间要求紧,每天盯着研发进度,经常问“这个需求什么时候支持,我们等着用”。导致产研部门的研发抱怨产品节奏乱,无法按照自身节奏进行迭代,被项目推着走,没有时间思考,人手不足,加班多,工作压力大…… 价值:该特性很好的规避了研发因为时间紧迫,写的一些临时代码腐蚀核心业务系统。它需要做到不论从数据模型、业务逻辑、交互展示都能有扩展能力,并且这些扩展能力与个体研发无关才行。它同时所描述的也是一个具备差量计算能力的软件架构模式,它允许用户通过添加或移除扩展包来定制标准应用,同时保持应用的可逆性和独立性。这种架构模式的核心优势在于其灵活性和可维护性,使得应用的定制和恢复变得简单而高效。 技术原理:它所描述的是一个基于元数据驱动和差量计算的软件架构模式,它允许用户通过添加或移除扩展包来定制标准应用,同时保持应用的可逆性和独立性。这种架构模式的核心优势在于其灵活性和可维护性,通过元数据来驱动应用的构建和变更,使得应用的定制和恢复变得简单而高效 在这种架构中,元数据起到了至关重要的作用。元数据是关于数据的数据,它描述了数据的结构、属性、关系等信息。在软件应用中,元数据可以用来描述应用的组件、功能、配置等信息。通过元数据驱动应用可以根据元数据的描述来动态地构建和配置自身的功能和结构 差量计算则是实现应用可逆性的关键。当添加或移除扩展包时,系统会根据扩展包中的元数据与标准应用的元数据进行差量计算,确定需要添加或移除的功能和组件。这种差量计算可以确保在添加扩展包后,应用能够保持原有的功能和稳定性,同时新增扩展包带来的新功能,而在去除扩展包时,应用能够恢复到原始的标准状态,不会留下任何冗余或冲突的代码和配置。 为了实现这种架构模式,元数据注册表和分布式部署能力是非常重要的。元数据注册表需要能够存储和管理大量的元数据信息,并且提供高效的查询和更新机制。分布式部署能力则能够确保应用在不同的环境中都能够稳定运行,并且能够快速地响应扩展包的添加和移除操作,即差量(扩展包》可独立存在又相互作用。 总的来说,这种基于元数据驱动和差量计算的软件架构模式为应用的定制和恢复提供了强大的支持,使得应用能够根据不同的需求进行灵活的定制和扩展。同时,它也提高了应用的可维护性和可靠性,降低了开发和维护的成本 2. 协同演进 协同演进,在应用上的特征图 场景:它所描述的场景是一个复杂的软件升级过程,其中涉及了标准应用的升级以及用户个性化扩展的保留。通过面向对象的方式扩展标准应用的功能,可以在升级过程中保持用户自定义逻辑的完整性,并同时集成新版本中的新特性。 价值:很多号称产品型的软件公司,在交付客户项目的时候,都是从标品复制一个分支,然后客户个性化直接在这个分支上改。这种模式会带来两个问题: 是当客户数量变大,每个客户的版本都不一致,维护成本很高; 是当标品升级带来的新特性无法复制给客户,导致客户满意度下降甚至流失。协同演进就是要解决这个问题。 技术原理:它需要在第一个差量计算的特性基础上才能得以完成,同时在这种升级能力中,元数据驱动和模型驱动是关键所在。元数据驱动确保了应用能够理解和处理不同版本之间的变化,包括功能的增删改以及结构的调整。模型驱动则提供了描述和管理应用结构、组件和行为的能力,它不仅能够描述模型间的关系,还能够支持面向对象的特性,如继承、重写和重载等。 具体来说,当标准应用从V1升级到V2时,元数据驱动机制会首先识别和分析两个版本之间的差异。对于用户应用1中已经扩展的A功能,由于采用了面向对象的方式进行扩展,因此在升级过程中,A+逻辑作为A功能的重写或重载版本会被保留下来。同时,V2版本中新增的B功能也会被集成到用户应用1中,因为它是作为标准应用的新特性而存在的。 这种升级能力的实现依赖于一个强大的元数据注册表和模型管理能力。元数据注册表需要能够存储和管理不同版本应用的元数据信息,包括功能、组件、结构等。模型管理能力则需要能够解析和应用这些元数据,以生成正确的应用结构和行为。同时,还需要一套高效的升级机制来确保升级过程的平滑和可靠。 总的来说,通过元数据驱动和模型驱动的结合,可以实现标准应用的平滑升级,同时保留用户个性化扩展的完整性。这种能力对于提高软件的可维护性、可扩展性和用户满意度具有重要意义 3. 公民研发和专业研发共同参与 专业研发与公民研发共同参与,在应用上的特征图 场景:它所描述是在应用开发的整个生命周期中,专业研发专注在标品的长期规划与迭代,当出现临时性的需求或者应急性的辅助场景则由非专业人士进行即公民研发方式进行。这种模式下,专业研发可以按照规划有节奏的迭代产品,做更高级的事情,不至于忙于应对临时性的事务没有深度思考,更加避免了因为临时代码堆积导致产品从内部腐化。同时利用独立的扩展逻辑包和无代码方式解决了业务的紧迫感,毕竟业务需求的合理性是很难争论出高低的。它在前两个特性基础上让研发效能进一步得到释放。 价值:它的本质是,在专业研发在以低代码的方式下实现应用,并通过无代码的方式,快速扩展逻辑功能和创建辅助性应用。整个过程无缝衔接,我们给他取个名字专业名称叫:“低无一体”。它大大降低了技术门槛,使得专业和非专业的研发人员都能参与到应用扩展和定制中来。此外,它还提高了业务响应能力,使得企业能够更快速地适应市场变化和客户需求。 技术原理:它的核心要求就是元数据在线,元数据在线能力是指能够实时地、在线地管理和操作元数据,这种能力为企业或组织带来了诸多优势。通过无 代码的方式,用户可以更加灵活地进行应用的个性化扩展,以应对各种应急性需求,从而显著提升业务的响应能力。此外,元数据在线管理还确保核心应用、核心应用扩展以及辅助应用都是基于一套统一的技术体系构建的,这为不同角色的用户(包括专业和非专业的研发人员)提供了多样化的参与方式。同时,元数据在线管理需要符合开闭原则,这确保了系统的稳定性和可扩展性,使得新的功能或需求可以通过添加新的元数据或配置来实现,而非修改现有系统。 这种低代码开发与无代码一体化的优势在于,它大大降低了技术门槛,使得专业和非专业的研发人员都能参与到应用扩展和定制中来。此外,它还提高了业务响应能力,使得企业能够更快速地适应市场变化和客户需求。 总之,从用户应用到业务实施的过程通过元数据在线得到了优化和升级。低代码开发与无代码一体化的优势使得整个过程更加高效、灵活和易于维护,为企业带来了显著的价值和竞争优势。 4. 基于平台级别的AOP能力出现反向集成 反向集成,在应用上的特征图 场景:平台级别的AOP(面向切面编程)能力允许开发者在应用程序的特定点“切入”额外的逻辑,而无需修改原有的业务代码。这种能力特别适用于横向追加平台逻辑,即在多个不同服务或功能点插入通用的处理逻辑,如日志记录、权限检查、审计、多租户、多语言等。过往在微服务架构中,这些能力都需要业务系统各自主动去对接,有了平台级别的AOP能力,则这些通用能力可以反向为所有业务系统增加特性能力,无需业务系统研发感知。这种现象我们称之为“反向集成”,能让业务研发更加专注在业务研发本身,不需要关心与业务无关的通用功能上。 价值:AOP的核心思想是将这些横切关注点(cross-cutting concerns)从业务逻辑中分离出来,使得业务代码更加清晰和专注于其核心功能。在平台级别的AOP中,标准化协议是实现这一能力的关键。平台具备统一的入口和扩展能力是非常重要的,因为它允许开发者在不修改现有代码的情况下添加新功能或修改现有功能的行为。这种能力对于快速响应业务需求变化、减少维护成本和提高代码质量都是非常有益的。 技术原理:标准化协议确保了不同组件之间的通信与语义是统一的,从而使得AOP能够更容易地实施。例如: a前后端通信要标准协议(与端无关): 这意味着无论前端是使用Web、移动应用还是其他类型的客户端,后端服务都应该能够以一种标准的方式与之通信。 bORM层要有标准协议(与数据库无关): 对象关系映射 (ORM)层应该提供一个标准的接口来与数据库进行交互,这样无论底层使用哪种数据库(如MySQL、PostgreSQL、Oracle等),上层的业务逻辑都不需要改变。 cRPC需要标准协议(与Dubbo和Spring Cloud无关): 远程过程调用 (RPC)应该遵循一种标准协议,以便不同的服务可以无缝地进行通信,而不受特定框架 (如Dubbo、Spring Cloud等)的限制。 d所有逻辑调用统一fun调用: 这意味着平台上的所有功能调用都应该通过一个统一的入口点(如一个函数或方法)进行,这样AOP就可以在这个入口点切入额外的逻辑。 总的来说,平台级别的AOP能力通过标准化协议和统一的调用入口,为开发者提供了一种强大而灵活的方式来管理和扩展平台的逻辑功能。 5. 应用研发与部署无关 应用研发与部署无关,在应用上的特征图 场景:现在研发在选择部署方式的时候往往会选择分布式部署,或者你的客户招标需求里就写着“微服务”,构建一个微服务系统并不是一件容易的事,构建的复杂度远远超过单体系统,开发人员需要付出一定的学习成本去掌握更多的架构知识和框架知识。服务与服务之间通过HTTP协议或者消息传递机制通信,开发者需要选出最佳的通信机制,并解决网络服务较差时带来的风险。另外服务与服务之间相互依赖,如果修改某一个服务,会对另一个服务产生影响,如果掌控不好。会产生不必要的麻烦。由于服务的依赖性,测试也会变得很复杂,比如修改一个比较基础的服务,可能需要重启所有的服务才能完成测试。前段时间有篇很火的文章,《从微服务转为单体架构、成本降低 90%!》,无论是选择何种部署方式,我认为这都应该跟应用研发无关。 价值:应用研发与部署无关的理念确实为现代软件架构带来了显著的优势,它使得研发团队能够专注于业务逻辑和功能实现,而无需担心具体的部署细节。这种分离带来了灵活性、效率以及成本效益的多重提升。应该采用一种同时支持分布式和单体部署、且可以自由切换的架构,我们称之为可分可合。 首先,可分可合的能力使得系统能够灵活应对业务量的变化。在业务量小的时候,可以采用单体部署的方式,简化部署流程,降低初期成本。随着业务量的增长,系统可以平滑地过渡到分布式部署,通过拆分微服务来提高系统的处理能力和扩展性。这种灵活性确保了系统既能满足未来发展的需要,又能兼顾当下的成本效益。 其次,应用级别扩容的能力使得系统性能不再受限。通过增加微服务实例或调整资源配置,系统可以按需进行扩容,从而确保在业务高峰期或突发流量下仍能保持稳定的性能。这种按需扩容的方式不仅提高了系统的可靠性,还降低了运维成本。 技术原理:核心在于逻辑调用的统一执行和智能判断。通过如funEngine这一统一调用引擎,系统能够智能地选择最适合当前业务场景和性能需求的fun调用方式。无论是同步调用、异步调用还是基于消息队列的调用方式,funEngine都能进行智能决策,确保调用的高效性和可靠性。这种统一调用的方式简化了开发过程,降低了开发难度,同时也提高了系统的可维护性和可扩展性。 此外如果作为低代码或者其他研发平台来说。被集成特性也是实现该特性的关键所在。它提供了一套标准化的接口和协议,使得其他系统或应用能够轻松地与其进行集成。这种平台框架化的特性能够作为一个统一的、可扩展的框架来支撑整个系统的运行。 综上所述,具备可分可合的能力、应用级别扩容以及逻辑调用的统一执行和被集成特性,共同构成了应用研发与部署无关这一核心特性。该特性使得软件系统能够灵活地应对业务变化,实现高效、可扩展和可维护的运行,从而满足客户的长期发展需求并兼顾当下的成本效益。

    2024年5月23日
    1.3K10

Leave a Reply

登录后才能评论